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Abstract 

EFFECTIVENESS OF ULTRAFILTRATION ON THE RECOVERY AND REUSE OF 

LIQUID ENZYMES IN THE PRODUCTION OF BIODIESEL 

 

Rebecca Hobden,  

B.S., Manhattan College 

M.S., Appalachain State University 

 

Chairperson: Jeffrey E. Ramsdell 

 Biodiesel is a transportation fuel that has similar characteristics to petroleum diesel, 

but is made from natural fats and oils, making it a more renewable and sustainable 

alternative. The most sustainable biodiesel uses low quality waste streams, such as waste 

vegetable oils, animal fats, soapstocks, and brown grease as feedstock.   Traditional biodiesel 

production involves a transesterification reaction to convert feedstock to biodiesel using an 

acid or base catalyst.  Enzymatic catalysts and the role they can play in production of 

biodiesel have begun to be researched because they are more environmentally benign, 

produce higher value co-products, require less energy, and produce cleaner biodiesel as 

compared to acid or base catalysts.  The major drawback of enzymatic catalysts is their high 

cost. Therefore, to make enzymes a feasible and affordable alternative, the producer must be 

able to recover and reuse them. This research looks at two techniques to effectively and 

efficiently recover enzymes so they can be reused to catalyze multiple batches.    

 Two runs were analyzed, each of which used one dose of enzymes to catalyze four 

consecutive batches.  Enzyme recovery and reuse techniques of a simple settling method 

versus ultrafiltration were compared.  The initial batch in each run reacted feedstock, 
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methanol, water, glycerol, and fresh enzyme over a 24 hour period.  At the completion of the 

reaction, batches were allowed to settle.  After two hours of settling, two phases formed: a 

biodiesel phase and an aqueous phase, the latter of which contained the enzymes. In the 

filtration method, at this point the aqueous phase passed into a tangential flow filtration 

module where enzymes were retained by the membrane, resulting in an enzyme-rich retentate 

that was used to catalyze the next batch in the run.  This technique was compared to a 

technique that allowed a longer settling time of 24-72 hours, during which the enzymes 

concentrated in a thin layer between the two phases.  This enzyme layer was recovered with a 

portion of the aqueous phase and used to catalyze the next batch in the run.    

 Samples were taken throughout the batches and the FAME was analyzed for free fatty 

acids.  Gas chromatography was used to determine bound glycerin content. Additionally, at 

the 24-hour period, samples of the aqueous phase were analyzed for enzyme activity.  

Analysis showed that both techniques resulted in some loss of enzymes, but the overall loss 

in activity was 46.8% using ultrafiltration compared to 72.7% with settling.  This loss of 

enzymes in the settling technique is also seen by a more significant reduction in reaction 

rates from one batch to the next as compared to the rates of consecutive batches with 

enzymes recovered using the ultrafiltration technique.  Although findings are preliminary, 

this study shows promise for enzyme catalysts as an economically feasible alternative for 

biodiesel producers, particularly when using ultrafiltration as a way to recover and reuse 

enzymes. Additional research and optimization of this process is one step in making 

enzymatic biodiesel production a reality. 
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Chapter 1: INTRODUCTION 

 The dependence of modern communities on convenient transportation fuels creates a 

mounting dilemma as the cost, insecurity and environmental degradation of obtaining 

petroleum fossil fuels increases. According to the US Energy Information Administration 

(USEIA), the United States consumed 18.8 million barrels per day (MMbd) of petroleum 

products during 2011. One way this dependence is being curbed is through the gradual 

adoption of alternative fuels. Biodiesel is one such alternative fuel that can be used in 

existing diesel engines, is a renewable energy, particularly when produced from waste oil 

streams, and is a non-toxic, biodegradable resource.  

 Because of the increasing acceptance and demand for biodiesel, production numbers 

for 2011 reached over one billion gallons (approx. 0.07 MMbd) according to a year-end 

report published by the US Environmental Protection Agency. While this number is a small 

fraction of the overall petroleum consumption, its use is a growing trend. To date there are 

151 production plants registered with the National Biodiesel Board (NBB) in the United 

States, with more than half of those reporting production capacity of less than 5,000,000 

gallons per year. These production plants are small compared to other biodiesel producers, 

some of whose yearly production capacity exceeds 100,000,000 gallons, but they, none the 

less, play an important role in bringing biodiesel into the communities of mainstream culture. 

 A defining characteristic of many of these smaller biodiesel producers is a mission 

that considers the environmental and community benefits, as well as economic ones. The 

environmental benefits of biodiesel are realized in the diversion of waste streams, such as 
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waste vegetable oil (WVO), chicken fat, and pork fat; production of a renewable resource to 

displace fossil fuels; reduction of emissions such as carbon monoxide, ozone-forming 

hydrocarbons, hazardous diesel particulate, and sulfur dioxide during combustion; and its 

biodegradable and nontoxic nature. Communities benefit from the production of biodiesel in 

the creation of jobs in a growing sector of business; decrease in reliance on foreign oil 

imports; and enhancement of rural economies by providing a market for excess production of 

vegetable oils and animal fats (Akoh, Chang, Lee, & Shaw, 2007; Burton & Fan, 2009; Shah, 

Sharma, & Gupta, 2003; Wang, Ou, & Zhang, 2007).  

 As with any commercial endeavor, a balance between the mission and the economics 

must be met to ensure success. Economic considerations and costs include how quickly 

feedstock can be converted to clean biodiesel, availability and quality of feedstock, inputs 

other than feedstock, energy inputs required for heating processes, downstream purification 

and input recovery, labor, and quality control. 

 Traditionally, biodiesel production uses a base or acid catalyst to convert triglycerides 

(TG) and free fatty acids (FFA) found in fat and oil feedstocks into fatty acid acyl esters 

(FAAE) or biodiesel. Once converted the FAAE requires purification from contaminants and 

byproducts, such as glycerol, soaps, water, catalyst and excess methanol. The expense and 

availability of feedstock and downstream processes, which are costly and create a large 

volume of contaminated wastewater, are major limitations to the success of any small scale 

commercial producer. Therefore, choice of catalyst, which influences quality of feedstock 

that can be used and the presence and interaction of by-products during the reaction and 

purification process, can influence the overall success of the producer.  
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 More recently enzymatic catalysts have been researched as an attractive option in 

biodiesel production. The use of enzyme catalysts, rather than traditional chemical catalysts, 

has the potential to offer an economic advantage by utilizing lower quality (and often 

cheaper) feedstocks from more varied sources. Additionally, research has shown the enzyme 

catalyzed process to produce a higher value co-product of technical grade glycerol, react 

under milder conditions, and thus more energy efficient conditions, and produce a cleaner 

biodiesel product requiring less downstream purification (Akoh et al., 2007; Shah et al., 

2003). However, to make costly enzymes truly an affordable alternative, the producer must 

be able to recover and reuse them. The optimization of the recovery and reuse process 

currently being explored by industry and academics will help make enzymatic biodiesel 

production for the small scale producer feasible. 

Statement of the Problem  

 In spite of the many benefits of using enzyme catalysts, cost has been a constraining 

factor in their widespread adoption (Fjerbaek, Christensen, & Norddahl, 2009). One way to 

offset some of the cost associated with enzymes is to recover and reuse the initial dosage of 

enzymes for several biodiesel batches. This has prompted recent research in immobilized 

enzymes as they are bound to a carrier and thus easy to extract via a simple screening 

process. However, immobilized enzymes are much more costly and the bulky carrier can lead 

to a decrease in enzyme activity (Fjerbaek et al., 2009). Liquid or soluble enzymes are 

cheaper and often times a more effective catalyst than immobilized enzymes, however the 

difficulty in removing and reusing them has been a deterrent to their use. 

 Two emerging techniques in which liquid enzyme catalysts have been recovered are 

through gravity settling and decantation of by-products, enzymes and biodiesel or with an 
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ultrafiltration system. In the first technique referred to as selective aqueous phase reduction 

or SAPR the aqueous phase, composed predominantly of glycerol co-product, excess 

methanol, water, and enzyme, is allowed an extended period of settling time during which 

the enzyme can separate from the more dense material. The second technique is defined by 

the use of tangential flow filtration or TFF, a form of ultrafiltration. In this technique the 

aqueous phase is circulated through the filtration unit, which retains the enzyme and allows 

glycerol, water, and methanol to be removed as permeate.  

Purpose of the Study 

 This research aimed to quantify the effectiveness of using these enzyme recovery 

technologies on a pilot-scale representative of and easily scalable to small commercial 

producers. Comparisons were made in the use of a TFF system to SAPR as a recovery 

technique of one form of the enzyme Themomyces lanuginosus lipase after its use and reuse 

as a catalyst for the transesterification of triglycerides (TG) with methanol to make fatty acid 

methyl esters (FAME) or biodiesel. The percent conversion of TG to FAME was determined 

using gas chromatography throughout and at the completion of each of four consecutive 

batches made with one dose on enzymes. The FAME yield as well as enzyme activity tests 

performed on the permeate (for TFF) or reduction (for SAPR) streams was used to determine 

the recovery rate of active enzyme from the previous batch.  

Research Hypothesis and Related Research Question 

 This research is guided by the following hypothesis: 

H1: Tangential Flow Filtration (TFF) is a more effective method for the recovery of active, 

liquid enzymes from the transesterification of waste vegetable oil with up to 10% free fatty 

acid (FFA) into fatty acid methyl esters (FAME) catalyzed by a commercially available 
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formulation of the enzyme Thermomyces lanuginosus lipase as compared to the simpler 

separation technique of selective aqueous phase reduction (SAPR). 

Limitations of the Study 

 The limitations of this study can be categorized into factors that affect accurate data 

collection and analysis and factors that may have affected enzyme activity and/or the reaction 

rate. Due to the large volume of aqueous phases, pre- and post-reaction, exact quantification 

was difficult. Using measurements based on volume, rather than mass, allowing limited time 

for phase separation, resulting in residual FAME suspended in the aqueous phase, and, using 

rough graduated marks on the side of a 5 gallon carboy all contributed to inaccuracies in 

reported aqueous phase quantities.  

 The limitations that may have influenced the recovery of active enzymes and the 

reaction rates stem from quality of feedstock and inadequate apparatus. Discrepancies in 

methanol dosing rates and volumes from their target values may have affected the reaction 

rates as well as caused deactivation of enzymes. These discrepancies stemmed from the 

unavailability of a high quality dosing pump that could meet the target dosing rate, rather a 

configuration of three imprecise dosing pumps plumbed together was used to approximate 

the target dosing rate. The effects of this were minimized by regularly measured and adjusted 

dosing rates.  

 In the membrane selection process a conservative molecular weight cutoff (MWCO) 

was used to assure the enzymes were retained. However, this small MWCO contributed to 

slow permeate flux rates, long filtration times, and higher gel layer formation. To counteract 

this, transmembrane pressures and pump speed were increased, which resulted in system 

temperatures that exceeded the recommended temperatures for the enzyme. While 
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temperatures were not elevated for long periods of time, some enzymes may have been 

deactivated during this process.   

 Finally, the lack of available yellow grease or waste vegetable oil feedstock led to the 

use of a 50/50 mixture of distiller’s dry grain corn oil with WVO. All previous bench-scale 

research that contributed to this research was performed using either virgin soy oil or yellow 

grease. It is suspected that the DDG corn oil had compounds which made phase separation 

more difficult at the larger pilot scale volume.      

Significance of the Study 

 This research will be most useful to small scale commercial producers of biodiesel 

that produce less than 5,000,000 gallons/year looking for an alternative to chemical catalysts. 

It may also hold interest for an industry or research community interested in the use, 

mechanism, and kinetics of enzymes, particularly the Thermomyces lanuginosus lipase, as a 

biocatalyst. The impact of this study on the production of biofuels could be widespread, if it 

allows the industry to move closer to using enzymes, a more environmentally benign, energy 

efficient and economically profitable catalyst for biodiesel production. 
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Glossary of Terms 

Activation energy. The minimum energy needed for reaction to occur. 

Active site. The region of an enzyme in which catalysis takes place. 

Acyl group. A portion of a molecule with the formula –COR, where R is an alkly group. 

Acylglycerols. An ester of glycerol and fatty acids that occurs naturally as fats and fatty oils. 

α-helix. A regular secondary structure of polypeptides, with 3.6 residues per right-handed 

turn, a pitch of 5.4 A, and hydrogen bonds between each backbone N-H group and the 

backbone C=O group that is four residues earlier. 

Amide. Any of a class of organic compounds derived from ammonia or an amine by 

replacement of hydrogen with an acyl group. 

Amino acid. A compound consisting of a carbon atom to which are attached a primary 

amino group, a carboxylic acid group, a side chain (R group), and a hydrogen atom. 

β-sheet – a regular secondary structure in which extended polypeptide chains form 

interstrand hydrogen bonds. In parallel β sheets the polypeptide chains all run in the same 

direction; in anti-parallel β sheets, the neighboring chains run in opposite directions. 

Carboxylesterease. An enzyme that is capable of hydrolyzing the ester bond in a wide 

variety of carboxylic acid esters to form an alcohol and a carboxylic acid. 

Carboxylic acid. A chemical compound of the type R–COOH, where R is an alkyl group. 

Conformation. In a molecule, a specific orientation of the atoms that varies from other 

possible orientations by rotation or rotations about single bonds; generally in mobile 

equilibrium with other conformations of the same structure. 

Enzyme. A large molecule that is a biological catalyst; most enzymes are proteins. 

Ester. A chemical compound of the type R1–COOR2, where R1 and R2 are an alkyl group. 
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Esterification. The reaction between alcohols and carboxylic acids to make esters.  

Free energy (G). A thermodynamic quantity whose change at constant pressure is indicative 

of the spontaneity of a process. For spontaneous processes, ΔG > 0, whereas for a process in 

equilibrium ΔG = 0.   

Ground state. The lowest energy or most stable state of a molecule 

Histidine. An amino acid with an imidazole functional group. 

Hydrolysis. The cleavage of chemical bonds by the addition of water. 

Ligand. A small molecule that binds to a larger molecule. 

Lipid. Any member of a broad class of biological molecules that are largely or wholly 

hydrophobic and therefore tend to be insoluble in water but soluble in organic solvents such 

as hexane.  

Nucleophile. A group that contains unshared electron pairs that readily react with an 

electron-deficient group (electrophile). 

Peptide bond. An amide linkage between the alpha-amino-acid of one amino acid and the 

alpha-carboxylate group of another. Peptide bonds link the amino acid residues in a 

polypeptide. 

Ping pong reaction. A group transfer reaction in which one or more products are released 

before all substrates have bound to the enzyme. 

Polypeptide. A polymer consisting of amino acid residues linked in linear fashion by peptide 

bonds. 

Regioselectivity. The property of a chemical reaction of producing one structural isomer 

(isomers which have their atoms arranged in a completely different order) in preference to 

others that are theoretically possible. 

http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Imidazole
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Residue. A monomeric unit of a polymer. 

Secondary structure. The highly regular sub-structures (α helix and strands of β sheet) 

which are locally defined and contribute to the three-dimensional form of enzymes. 

Serine proteases. A peptide-hydrolyzing enzyme characterized by a reactive serine residue 

in its active site. 

Steroselectivity. The property of a chemical reaction of producing one stereoisomer (isomers 

which have their atoms connected in the same sequence but differ in the way the atoms are 

oriented in space) in preference to others that are theoretically possible. 

Superhelical twist. A molecular structure in which a helix is itself coiled into a helix 

Transesterification. The reaction that exchanges the R group of an ester with the R group of 

an alcohol. 

Transition state. The particular arrangement of reactant and product molecules at the point 

of maximum energy in the rate-determining step of the reaction. 

Symbols & Abbreviations 

Asp  Aspartic acid residue 

ASTM  American Society for Testing and Materials 

CSTR  Continuously stirred-tank reactor 

DDG  Distillers Dry Grain 

FAAE  Fatty Acid Acyl Ester 

FAME  Fatty Acid Methyl Ester 

FFA   Free Fatty Acid 

Glu  Glutamic acid residue 

Gly  Glycine residue 

http://en.wikipedia.org/wiki/Molecule
http://en.wikipedia.org/wiki/Helix
http://en.wikipedia.org/wiki/Ester
http://en.wikipedia.org/wiki/Alcohol
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His  Histidine residue 

kD    kilo-Dalton; unit of molecular mass 

LMH  liter/m
2
/hour;  unit of flux 

MWCO  Molecular Weight Cut Off 

PBR  Packed Bed Reactor 

SAPR  Selective Aqueous Phase Reduction 

Ser  Serine residue 

TFF  Tangential Flow Filtration 

TG   Triglycerides 

WVO  Waste Vegetable Oil 
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Chapter 2: REVIEW OF RELATED LITERATURE 

Feedstocks 

 In the small-scale, commercial production of biodiesel, feedstock selection is the first 

of many factors that influence the quality of biodiesel produced and the overall success of a 

biodiesel production facility. When considering which feedstock(s) to use, availability, 

quality and cost all play an important role in the decision. The composition (i.e. the amount 

of free fatty acids versus triglycerides) determines the best mechanism, catalyst, and process 

to use to optimize the production of clean fuel that meets the American Society for Testing 

and Materials (ASTM, 2012) specifications and to enhance the economic viability of the 

production facility. Higher quality feedstocks come from refined vegetable oil, and lower 

quality feedstocks typically come from a waste stream. “[I]n order to compete with diesel 

fuel and survive in the market, lower-cost feedstocks are preferred, including waste cooking 

oil (WCO), grease, [and] soapstocks, since feedstock costs are more than 85% of the cost of 

biodiesel production” (Burton & Fan, 2009, p. 100). Other researchers have shown the high 

cost of feedstock having considerable economic impact on the total cost of biodiesel 

production (Yan, Salley, & Ng, 2009; Zhang, Dube, McLean, & Kates, 2003b). 

 In lipid feedstocks the molecules that are converted to biodiesel are acylglycerols, 

referred to as glycerides in the biodiesel industry, and free fatty acids. The major constituent 

in lipids, triglycerides (TG), is an ester composed of three moles of fatty acid chains, which 

are long hydrocarbon side chains bound to a one-mole glycerol backbone (Kovac, Scheib, 

Pleiss, Schmid, & Paltauf, 2000; Lam, Lee, & Mohamed, 2010). When a TG molecule 
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undergoes hydrolysis caused by the presence of water, free fatty acids (FFA), which are 

carboxylic acids that contain a long chain hydrocarbon side chain, are released, as well as 

monoglycerides, diglycerides or glycerol; one of these reactions is shown in Figure 2.1.  

 
            Triglyceride                  Water                             Diglyceride                Free Fatty Acid 

 

Figure 2.1. A triglyceride can be hydrolyzed to form a diglyceride and a free fatty acid. 

Similarly a diglyceride or monoglyceride can be hydrolyzed to form free fatty acids and a 

glyceride or glycerol (not shown). In all reactions the reverse (synthesis) reaction can 

combine a diglyceride, monoglyceride, or glycerol with fatty acid(s) to form a triglyceride.  

 

 

 There may also be contaminants present, such as water and particulate matter 

depending on the source of the feedstock; these should be removed in a production facility in 

the pre-treatment step(s). 

Virgin versus waste feedstock. 

 In traditional biodiesel production facilities, virgin oil feedstock is a more desirable 

feedstock because the conversion of pure TG to FAME is high, and the reaction time is 

relatively short (Wang et al., 2007). This is true in part because the low FFA content of virgin 

oils, which is between 0-1%, results in a chemically simple mechanism (Kemp, 2006; Lam et 

al., 2010). That being said, the high cost of virgin feedstocks, such as soybean, canola, palm, 

peanut, olive, sunflower and jatropha oils (Nielsen, Brask, & Fjerbaek, 2008) can make this a 

cost prohibitive option for a small-scale producer.  
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 Waste oils, such as waste vegetable oils (WVO), grease, soapstock or acid oils, 

animal fats (poultry, pork, lard, and tallow), and distillers dry grain oils are appealing as low 

cost feedstock (Burton & Fan, 2009; Nielsen et al., 2008). In addition to the lower cost of 

waste oils, the productive use of a waste stream and the debate between land-use for food 

versus fuel gives a compelling argument to avoid using virgin vegetable oils as feedstock 

(Akoh et al., 2007; Al-Zuhair et al., 2011). The drawback is a lack of purity, including a 

higher FFA and water content. The FFA content of waste oils most commonly acceptable for 

commercial biodiesel production ranges from 0.5 – 15% (Lam et al., 2010), but can be as 

high as 100%. The range of FFA content and the relative costs of a variety of oils are 

presented in Table 2.1. “[I]f waste cooking oil is to be made feedstock for biodiesel 

production, the amount of polar compound in the waste cooking oil, especially FFA, must be 

taken into consideration as it will greatly affect the transesterification reaction” (Lam et al., 

2010, p. 504).  

 

Table 2.1. Range of FFA in Various Feedstocks and Oils. 

Feedstock Oil/Fat Free Fatty Acid Level Relative Cost 

Refined Vegetable 

 Oil 

(Soybean, Canola) 

0 - 1% Highest 

Waste Fryer Oil/Fat 2 - 7% Low 

Animal Fats (Beef Tallow, 

Lard) 
5 - 30% Low 

Yellow Grease 7 – 30% Moderate 

Brown Grease greater than 30% Very Low 

Adapted from (Kemp, 2006, p. 108) 
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Saturation and degumming.  

 Other naturally occurring elements or phenomena may influence the success of 

producing biodiesel from lipids.  The two largest of these influences in the production of 

biodiesel are saturation of fatty acids and presence of phospholipids. Animal fats or tallow 

contain higher levels of saturated fatty acids, or double bonds in the fatty acid chain, which 

causes them to solidify at higher temperatures. Degumming is the process of removing 

phosphatides, also known as phospholipids, which are similar to TG, but have a phosphate 

ester bound to the glycerol backbone rather than a fatty acid chain. Phospholipids are natural 

emulsifiers, which makes separation of products post reaction difficult. The processing of 

vegetable oils for use as food typically removes these contaminants, but this is not always the 

case when lipids are being processed for feedstock (Institute of Shortening and Edible Oils, 

2006). ("Food Fats and Oil," 2006).    

Traditional Biodiesel Production 

 Most commercial biodiesel production processes follow the same general steps: pre-

treatment of feedstock, chemical reaction, separation of products and byproducts and 

finishing or washing of biodiesel product. However, the mechanisms, associated costs, and 

time spent on each step are unique to a production facility. To understand how those factors 

influence the success of a facility, an overview of the processes and of the variables specific 

to a facility is important. 

 Pretreatment of a single source or a mixture of feedstocks is a significant first step in 

that it removes impurities, most importantly water, but also food and other particulate matter. 

This step can be done with centrifugation or simple decantation, and is not a comparatively 

costly step. 



15 

 

 The next step is the chemical conversion of feedstock to biodiesel and glycerol. The 

TG (as well as mono- and diglycerides) and FFAs react with an alcohol in the presence of a 

catalyst to produce fatty acid acyl esters (FAAE) or biodiesel and glycerol. The most 

common alcohol used is methanol due to its low cost (Al-Zuhair, 2006; Jain, Sharma, & 

Rajvanshi, 2011; Lam et al., 2010), in which case the FAAE produced is a fatty acid methyl 

esters (FAME). The reaction of TGs with alcohol is referred to as transesterification. The 

reaction of FFA with alcohol is esterification. This reaction is carried out in a heated reactor 

with agitation or mixing. “Several aspects, including type of catalyst, alcohol/oil molar ratio, 

temperature, purity of reactants and free fatty acid content influence the course of the 

reaction” (Schuchardt, Sercheli, & Vargas, 1998, p. 200).  

 Once close to a complete conversion, the reaction mixture is allowed to cool to room 

temperature and settle under gravity. The heavier glycerol falls to the bottom and the FAME 

remains in the upper layer. “Traces of glycerol can remain suspended in the ester phase along 

with small amounts of tri-, di-, and monoglycerides, while the residual catalyst and unreacted 

alcohol are distributed between the two layers” (Saleh, 2011, p. 21). Decantation is a typical 

method for separating the two phases. Density meters and electrolysis may be employed to 

help make a precise separation, but are not often used. The FAME is water washed to remove 

residual glycerol, catalyst and possibly soap. The methanol and water still present in the 

FAME is removed via distillation, heat and surface area exposure, use of a magnesium 

silicate adsorbent, and/or with ionic exchange columns. This last purifying and polishing step 

helps produce biodiesel that meets ASTM Standard D6751-2012: “Standard Specification for 

Biodiesel Fuel Blend Stock for Middle Distillate Fuels,” which producers are required to 

meet in order to legally sell the fuel to costumers.  
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 The variables that are most often and successfully controlled in this process include 

reaction temperature, ratio of alcohol to oil, amount of catalyst, mixing intensity, feedstock 

used, and type of catalyst (Marchetti, Miguel, & Errazu, 2007; Ngo, Xie, Kasprzyk, Haas, & 

Lin, 2011). For commercial biodiesel producers the challenge is in figuring out the most 

profitable process in terms of their feedstock(s), raw materials, equipment availability, 

economic and technological constraints, and mission.  

Catalysts. 

 Both the transesterification and esterification reactions are catalyst driven. Many 

different types of catalyst have been studied for this process and have successfully converted 

TGs and FFAs to high levels of FAME, including alkali, acid, enzyme, super critical acids, 

and others. The purpose of the catalyst is simply to speed up the reaction without changing 

the end product. (Bender & Brubacher, 1973). 

 The most common catalysts used in commercial biodiesel production are alkali and/or 

acidic; therefore, we will use those catalysts to describe the mechanisms and kinetics of 

reactions that TGs and FFAs undergo in the production of biodiesel. The use of enzymes as 

catalysts is being developed and is the basis of this research; the characteristics of enzymes 

as a catalyst will be elaborated upon in a later section. 

Reactions of triglycerides and free fatty acids to form fatty acid methyl esters.  

 In biodiesel production transesterification refers to the process in which one mole of 

carboxylic ester (TG) reacts with three moles of methanol to form three moles of FAME 

(Figure 2.2). This is an equilibrium reaction, and an excess of methanol is used to drive the 

reaction forward to achieve a high yield of FAME. In a well-designed process, reactants are 

well mixed, and a 90-98% conversion of TG to FAME occurs. According to ASTM 
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specifications, the final biodiesel product should contain less than 0.2% by mass of glyceride 

back bones. 

 
              Triglyceride            3 x Methanol               Glycerol                  3 x FAME 

 

Figure 2.2. Transesterification is the primary reaction in the production of biodiesel. 

Glycerides and methanol combine to produce fatty acid methyl esters and glycerol.  

 

 The overall process from TG to FAME consists of three steps where di-glycerides 

and mono-glycerides are intermediates. The steps of this process are outlined in Figure 2.3. 

R1, R2, R3 are fatty acid chains containing 16-18 carbons and 0-3 double bonds. In addition to 

TG many feedstocks contain FFAs, which undergo conversion to FAME via esterification. 

This reaction is shown in Figure 2.4. 

Alkali catalyst. 

 Common alkali catalysts used by small-scale, commercial biodiesel producers are 

sodium hydroxide (NaOH) and potassium hydroxide (KOH), because they are both cheap 

and widely available. Additionally, alkali catalysis is favored in production because of its 

relatively short reaction time (30-90 min), high yield (90-98%), purity of the FAME 

produced, and relatively low reaction temperature (50-60 °C). The alcohol-to-oil molar ratio 

can vary from 1:1 to 6:1, but the optimal ratio was found to be 6:1, which gives the best 
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Triglyceride                 Methanol                      Diglyceride                          FAME 

 

 

 

 

 

 

            Diglyceride                 Methanol                    Monoglyceride                      FAME 

 

 

 

 

 

 

        Monoglyceride                Methanol                 Glycerol                                    FAME 

 

Figure 2.3. Three step progression of triglycerides to fatty acid methyl esters.  
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  Free Fatty Acid                 Methanol                                    FAME                                 Water        

 

Figure 2.4. Esterification is the reaction in the production of biodiesel where free fatty acids 

and methanol combine to produce fatty acid methyl esters and water.  

 

 

conversion rate to excess methanol used. The dosage of base used is 0.5-2% by weight of 

feedstock (Jain et al., 2011; Lam et al., 2010; Marchetti et al., 2007; Schuchardt et al., 1998; 

Wang et al., 2007; Zhang, Dube, McLean, & Kates, 2003a). 

 A limitation with using an alkali catalyst is the required purity of the reactants. That 

makes alkali catalyst unfavorable for use with waste oils because of their higher FFA and 

water content. A feedstock with a FFA value higher than 0.5% leads to problems (Lam et al., 

2010; Marchetti et al., 2007; Wang et al., 2007). The problem with a high FFA and water 

content in the feedstock when it is base catalyzed is that the FFA reacts with whatever water 

may be present and the base catalyst to form soaps. Soap formation reduces FAME yields by 

consuming FFA and creates an emulsification with the glycerol, which makes downstream 

separation of products difficult. This saponification reaction is shown in Figure 2.5. 

 
  Free Fatty Acid         Sodium Hydroxide                     Sodium Soap                            Water 

 

Figure 2.5. Saponification is an unwanted reaction that occurs when alkali catalyst are used.   

Free fatty acids react with the base catalyst to form soaps.  
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Acidic catalyst. 

 Using acid as a catalyst is a better option when there is a high level of FFA content in 

the feedstock, which is typically found to be true in waste oils (Marchetti et al., 2007; 

Schuchardt et al., 1998; Zhang et al., 2003a). “Acid catalyzed transesterification holds an 

important advantage with respect to base-catalyzed process: acid catalyst is insensitive to the 

presences of FFAs in the feedstock and can catalyze esterification and transesterification 

simultaneously” (Lam et al., 2010). 

 The most common acid used in this process is sulfuric acid (H2SO4). The drawbacks 

of using acid catalysis include the slower reaction time to reach complete conversion (3-18 

hours), higher temperature required (55-100 °C), and the fact that an alcohol-to-oil molar 

ratio on a scale closer to 30:1 is required to drive the reaction forward (Marchetti et al., 2007; 

Schuchardt et al., 1998). An acid dosage of 1.5-3.5 mol% is typically used (Zhang et al., 

2003a).  

 While acid catalysis does alleviate the problem with high FFA, the associated costs of 

this catalyst are higher. This is due in part to the larger dose, longer time, and higher 

temperature required, which makes it more energy intense. In addition, more expensive 

stainless steel equipment is required to handle the corrosive acid. This last point also brings 

to light safety issues that arise when using sulfuric acid in a production facility (Wang et al., 

2007). 

Two-step process. 

 A two-step system where the feedstock is first reacted with an acid catalyst to reduce 

FFA content, then reacted with an alkali catalyst has been shown to be effective on waste oils 

(Lam et al., 2010; Ngo et al., 2011; Wang et al., 2007; Zhang et al., 2003a). “The advantage 
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of this two-step process is that it can increase reaction rate by using alkaline catalysts and 

avoid soap formation by applying acid catalysts” (Burton & Fan, 2009, p. 101). Jain et. al 

(2011) studied the kinetics of this two-step process when used in India to convert waste oil to 

FAME at different temperatures, reaction times, and catalyst dosage. Wang et al. (2007) 

successfully applied this two-step process using a less volatile acid, ferric acid, followed by 

potassium hydroxide with a 97% conversion.  

 Drawbacks to this system stem from the extra steps involved to esterify the FFAs 

with acid. This part of the process leaves an effluent containing sulfuric acid and the recovery 

of catalyst is difficult; in addition, there is the high cost of the reaction equipment need for 

acidic reactions (Ngo et al., 2011; Wang et al., 2007). “The drawback of this two-step 

process is even more pronounced due to the requirement of extra separation steps to remove 

the catalyst in both stages. Although [the] problem of catalyst removal from the first stage 

can be avoided by using base catalyst from the second stage through a neutralization process, 

the use of extra base catalyst will add to the cost of biodiesel production” (Lam et al., 2010, 

p. 508). A summary of the reaction parameters and FAME yield for alkali or base catalysis, 

acidic catalysis and a two-step process are presented in Table 2.2. 
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Table 2.2. Comparison of Reaction Conditions and Performance for Various Types of 

Catalysts Used in Transesterification of WVO 
Catalyst Reaction Conditions Performance Reference 

 Temp, C 
Type of 

alcohol 

Catalyst 

loading, 

wt.% 

Reaction 

time, h 
  

Homogeneous base catalyst 

NaOH 60 
Methanol 

(7:1) 
1.1 0.33 

Yield = 88.8% Leung and Guo 

(2006) 

KOH 87 
Methanol 

(9:1) 
6 2 

Yield = 87% Demirbas (2009) 

Homogeneous acid catalyst 

H2SO4 95 
Methanol 

(20:1) 
4 20 

Conversion = 

90% 

Wang et al. (2006) 

H2SO4 70 
Methanol 

(245:1) 
41.8 4 

Yield = 99% Zheng et al. (2006) 

H2SO4 65 
Methanol 

(30:1) 
1 69 

Conversion = 

99% 

Freedman et al. 

(1984) 

Two-step: Acid catalyst followed by base catalyst 

Ferric 

sulfate 

followed 

by KOH 

Acid: 95 
Methanol 

(10:1) 2 2 
 

Conversion = 

97% 

 

Wang et al. (2006) 

Base: 65 
Methanol 

(6:1) 1 1 

Ferric 

sulfate 

followed 

by KOH 

Acid: 

100 

Methanol 

(9:1) 2 2 
 

Yield = 96% 

 

Patil et al. (2010) 

Base: 

100 

Methanol 

(7.5:1) 0.5 1 

Ferric 

sulfate 

followed 

by CaO 

Acid: 60 
Methanol 

(7:1) 0.4 3 
 

Yield = 81.3% 

 

Wan Omar et al. 

(2009) 

Base: 60 

Methanol 

(7:1) 

Not 

clearly 

specified 

3 

Adapted from (Lam et al., 2010) 
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Enzymes 

 The production of biodiesel using an enzymatic catalyst offers many advantages, with 

the one major drawback being their high price. Some advantages include insensitivity to high 

FFA content, milder and less energy intense (lower temperature) reaction conditions, 

elimination of soap formation, cleaner product streams and easier purification steps of FAME 

to obtain ASTM (2012)-standard biodiesel. An additional economic advantage is the 

production of a higher value co-product of technical grade glycerol compared to the less pure 

glycerol byproduct in traditional chemical catalysis processes (Al-Zuhair, 2006; Fjerbaek, 

Christensen, & Norddahl, 2009; Lam et al., 2010; Yucel, 2012). 

Physical characteristics of enzymes. 

 To better understand enzymes’ role in the production of biodiesel, it is helpful to have 

a basic understanding of what enzymes are and their catalytic behaviors. Enzymes, in 

general, are large protein molecules with molecular weights ranging in size of several 

thousand to several million g/mol. Comparing this to the other molecules in 

transesterification, where TG’s molecular weight is in the range 675 to 975 g/mol, methanol 

has a molecular weight of 32 g/mol and FAME ranges in weight from 200 to 300 g/mol. 

Enzymes have active site(s) where the chemical reaction occurs, and the rest of the enzyme 

acts as scaffolding or is used to direct the substrate to the active site on the enzyme 

(Silverman, 2000).  

Enzymes as catalysts. 

 In general enzymes yield higher reaction rates, perform under milder reaction 

conditions, and have greater reagent specificity. Enzyme catalysts affect both the mechanism 

and the kinetics of a chemical reaction. The mechanism refers to the course of events during 
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a chemical reaction, and kinetics refers to the rate at which the reaction occurs. “In general, 

catalysts stabilize the transition state relative to the ground state, and this decrease in 

activation energy is responsible for the rate acceleration” (Silverman, 2000, p. 13). Enzymes 

affect the transition state of a reaction by bringing together two or more substrates in an 

organized manner in which they normally would not be, by forming an intermediate state 

with the substrate that is bound, and by decreasing the activation energy (Silverman, 2000).  

 In any reaction, the reactants (A + B) and/or products (P + Q) are in states of 

minimum free energy, and the transition state (X
ǂ
) corresponds to a maximum free energy, or 

the highest point on the transition state diagram in Figure 2.6. The activation energy, also 

called the free energy of activation, ΔG
ǂ
 is the difference between the free energy of the 

transition state and the free energy of the reactants. Enzyme catalysts provide a reaction 

pathway with a transition state whose free energy is lower than that in the uncatalyzed 

reaction. The difference between the ΔG
ǂ
 for the uncatalyzed and the catalyzed reaction 

(ΔG
ǂ
cat), indicates the efficiency of the catalyst, where the larger ΔG

ǂ
cat, the more catalytically 

efficient the enzyme is (Voet, 2012), as shown in Figure 2.7.  

 There are numerous different hypotheses for the progression of enzyme catalysis. 

However, the first step is common to all hypotheses, which is “an enzyme-catalyzed reaction 

always is initiated by the formation of an enzyme substrate (E∙S) complex, from which the 

catalysis takes place” (Silverman, 2000, p. 2). This E∙S complex is created when the substrate 

binds to one of the active sites on the enzyme. This step happens very quickly, and readers 

should notice from the depiction in Figure 2.7 that this step is in equilibrium.  
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Figure 2.6. The transition state diagram of the catalyzed (red) and uncatalyzed (blue) 

reaction A + B → P + Q shows that the transition state, X
ǂ
, is the state with the highest free 

energy. The effect of a catalyst on the transition state diagram shows a decrease in activation 

energy (Voet, 2012, p. 322).  

 

 This binding of the substrate to the enzyme involves non-covalent interactions, such 

as van der Waals interactions, electrostatic interactions, hydrogen bonding, and hydrophobic 

interactions. Because of these weak forces, the binding process is reversible, which is 

important for the product release step (Bender & Brubacher, 1973; Silverman, 2000; Voet, 

2012). 

 After this initial step, hypotheses diverge slightly. Two of the more well-known 

hypotheses of enzyme catalysis, lock-and-key hypothesis and induced-fit hypothesis, are 

described. The lock-and-key hypothesis is a crude description of how enzymes and substrates 

interact, stating that the enzyme is the “lock” into which the substrate, the “key,” would fit. A 

more nuanced explanation is the induced-fit hypothesis, which states that when a substrate 

begins to bind to an enzyme, interactions of various groups on the enzyme with each other 
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are initiated and produce a conformational change in the enzyme from a low catalytic form 

(poor catalyst) to high catalytic form (good catalyst). In bimolecular systems, such as in the 

reaction used in biodiesel production, the conformation resulting from the first molecule 

binding to an active site establishes an active site for the second molecule to bind (Silverman, 

2000; Voet, 2012). 

 Transition-State Theory states that the substrate does not bind most effectively in the 

E∙S complex; rather, as the reaction proceeds, the enzyme conforms to the transition-state 

structure, leading to the tightest interactions (increased binding energy) with the transition 

state structure. This conformation of the enzyme stabilizes the E∙S complex, known as 

transition-state stabilization, increases the concentration of the E∙S complex and increases the 

rate of the reaction. “The more tightly an enzyme binds its reaction’s transition state relative 

to the substrate, the greater is the rate of the uncatalyzed reaction relative to that of the 

uncatalyzed reaction” (Voet, 2012, p. 331). The ΔG between an E∙S complex and an enzyme-

transition state complex (ΔG
ǂ
E) is less than the ΔG of a substrate and its transition state 

(ΔG
ǂ
N) in an uncatalyzed reaction, or the ΔG

ǂ
cat for the enzyme. This is illustrated in the 

transition state diagram in Figure 2.7. It has been suggested that all hypotheses of enzyme 

catalysis are just alternative versions of this theory involving the transition state of the 

substrate (Voet, 2012).  
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Figure 2.7. The transition state diagram for an uncatalyzed reaction with an activation 

energy of ΔG
ǂ
N is shown in red, and for a catalyzed reaction with an activation energy of 

ΔG
ǂ
E is shown in blue. The small dips in the diagram for the enzyme catalyzed reaction arise 

from the binding of substrate and product to the enzyme (Voet, 2012, p. 331). 

 

 There are several reaction parameters that affect the rate of an enzyme reaction. They 

include temperature, pH, enzyme concentration, substrate concentration, and the presence of 

inhibitors. Table 2.3 gives a brief description of each of these. 

 

Table 2.3. Variables Affecting Enzyme Reactions  

Temperature 

With increased temperature, substrate and enzyme molecules increase 

collision frequency and kinetic energy and contribute energy to overcome 

the activation barrier. However, the temperature should not exceed a 

temperature that will destroy the enzyme or cause it to deactivate.  

pH 

pH affects the charge of amino acids at active sites which could alter the 

binding of a substrate. At the right pH, the enzyme will be able to bind at 

the active site faster so an increase of reaction rate is more likely to 

occur. Vice versa, if the pH is too high or low, that change the charge on 

the amino acid at the active site and that deactivates the active site which 

no longer allows the enzyme to bind. 

Enzyme 

Concentration 

An increase of enzyme concentration will also increase the chances of 

substrate-enzyme binding. 

Substrate 

Concentration 

An increase in substrate concentration will also increase the chances of 

substrate-enzyme binding. 

Inhibitors 

Enzyme inhibitors will decrease the activity of an enzyme and the rate of 

reaction. Inhibitors will bind to enzyme active sites and could modify the 

chemistry of an active site which can stop a substrate from entering. 
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 Once the substrate binds to the active site of the enzyme, a variety of mechanisms are 

employed to catalyze the conversion of the substrate to product by stabilizing the transition-

state or de-stabilizing the ground state (Silverman, 2000).  

Enzyme kinetics. 

 The dynamics of enzyme catalysis are manifested in a reaction in two ways: rate 

acceleration and specificity or selectivity. The Michaelis-Menten Theory is used to describe 

the kinetics of an enzyme catalyzed reaction. The model serves to explain how an enzyme 

can cause kinetic rate enhancement of a reaction and why the rate of a reaction depends on 

the concentration of enzyme present.  

 The first step in the desired reaction (the one that produces free product) of the 

process is the binding of the substrate(s) to the enzyme to form the E∙S complex. The product 

is then formed, released from the enzyme, and the enzyme is used to again bind to 

substrate(s) and the process starts over. Because of the reversibility of the reactions, 

unwanted interactions occur as well, such as the E∙S complex undergoing the reverse reaction 

to give free E and S without the production of P. In the case of biodiesel production, this 

would lead to a smaller yield of FAME. The equilibrium between enzyme, substrate, and the 

E∙S complex may be characterized mathematically by an equilibrium constants and rate 

equations derived from the formation and dissociation of the E∙S complex as well as the 

production of product. The overall reaction equation is displayed in Figure 2.8. 
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Figure 2.8. The simplest form of an enzyme-catalyzed reaction involves a single substrate 

converting to a single product where E=free enzyme, S=substrate, P=product, E•S=enzyme-

substrate complex. There are several rate constants that dictate the overall rate of the reaction 

(Silverman, 2000, p. 563). 

 

Rate of reaction.  

 The term k1 is the rate constant for the binding of the enzyme to the substrate forming 

the E∙S complex and is dependent on the concentration of the substrate and the enzyme. The 

term k-1 is the rate constant for the dissociation of the E∙S complex to enzyme and substrate 

and is dependent on the concentration of the E∙S complex, among other forces. The overall 

equilibrium constant, Ks, represents the formation and dissociation of the E∙S complex. The 

term k2 is the rate constant for the catalysis reaction which results in the product and 

regeneration of the enzyme.  

 Some simplifications can be made with the assumption that the concentration of 

substrate is much larger than the concentration of enzyme. This is a quite reasonable 

assumption because enzymes are such efficient catalysts it will typically be the case that only 

a small amount is needed, and in the production of biodiesel, this is desirable due to the 

enzymes’ efficiency and cost. When this assumption is made, the enzyme is saturated with 

substrate and the rate of formation and dissociation of the E∙S complex are equal. In this 

case, the concentration of the E∙S complex changes much more slowly than does the 

concentration of substrate. This is referred to as the steady state approximation. 

• • 
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 Under the steady state approximation, k2 is the limiting step and is referred to as the 

catalytic rate, or kcat. “The kcat represents the maximum number of substrate molecules 

converted to product molecules per active site per unit of time, that is, the number of times 

the enzyme ‘turns over’ the substrate to the product per unit of time” (Silverman, 2000, p. 5). 

Typical kcat values are 10
3 

s
-1

, which translates to about 1000 molecules of substrate 

converted to product every second.  

 Again, under the steady state assumption, Ks is referred to as the Michaelis-Menton 

constant, and is denoted by Km. More specifically, Km is the concentration of substrate that 

produces half the maximum rate, Vmax, of which the enzyme is capable (Silverman, 2000). 

This value is an indicator of the stability of the E∙S complex; the smaller the Km value, the 

more tightly the substrate and enzyme are bonded, leading to a more stable and higher 

concentration of the E∙S complex. The value of Km can be calculated from the equation 

below. The Km value for many E∙S complexes are on the order of 10
-6

 to 10
-3

 (Bender & 

Brubacher, 1973) 

    
        

  
 (2.1) 

Equating the rate of reaction to the rate constant times the concentration of the reactants, the 

rate of reaction can be derived to the equation below.  

   
           

      
 (2.2) 

Additionally, using the rate law to represent Vmax, which is dependent only on the enzyme 

concentration because Vmax is only attained at infinite (or very, very large) substrate 

concentrations, the maximum rate of reaction has the relationship to the initial enzyme 

concentration and kcat that is depicted below.  
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               (2.3) 

Substituting, the resulting equation given below is referred to as the Michaelis-Menton 

equation. 

 
  

       

      
 (2.4) 

From this relationship, increasing the substrate concentration will increase the rate of the 

reaction (Silverman, 2000). Additionally, Vmax is reached when all enzymes are in the E∙S 

complex, and can only be changed by the addition of more enzymes. This dependence is 

depicted graphically in Figure 2.9.  

 It is important to note that enzyme catalysis does not alter the equilibrium of a 

reversible reaction. If the enzyme accelerates the rate of the forward reaction, it likewise 

accelerates the rate of the reverse reaction. 

 
Figure 2.9. A graph of rate, ʋ, versus substrate concentration, [S], shows the non-linear 

dependence of the rate of an enzyme catalyzed reaction on the substrate concentration (Voet, 

2012, p. 361). 
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Ping pong bi-bi mechanism. 

 This description of enzyme kinetics is for a fairly simple, one-step reaction. However, 

most enzymatic reactions are more complicated, as is the case of the reactions in biodiesel 

production. These reactions include the binding of a second substrate to the enzyme as well 

as multiple steps in the mechanism. This is referred to as a ping pong bi-bi mechanism and is 

depicted in Figure 2.10.  

 

 
Figure 2.10. A ping pong bi-bi mechanism describes a group transfer reaction where one or 

more products are released before all substrates have been added where E=enzyme, A=1
st
 

substrate, P=1
st
 product, F=stable enzyme conform, B=2

nd
 substrate, Q=2

nd
 product  (Voet, 

2012, p. 367).  

 

 In this type of reaction one or more products is released before all substrates have 

been bound. A functional group of the first substrate A is bound to the enzyme to produce the 

first product P and a stable enzyme complex tightly bound to the functional group. In the 

second stage of the reaction, the functional group is displaced from the enzyme by the second 

substrate B to yield the second product Q thereby releasing the original form of the enzyme.    

 Despite these complications, the Michaelis-Menton form of the rate equation is 

generally applicable for this mechanism. “For a more complicated mechanism the constants 

kcat and Km do not refer to a single step; they become composite constants incorporating the 

rate constants for several steps” (Bender & Brubacher, 1973, p. 29). 
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Specificity. 

 Two steps, besides the formation of product, dictate the effectiveness and efficiency 

of enzymatic catalysis: substrate binding and product release. “High turnover numbers are 

only useful if these two physical steps occur at faster rates” (Silverman, 2000, p. 5). In 

addition, the weak, non-covalent bonds formed during the E∙S complex formation influence 

the effectiveness of the enzymatic catalysis. Several of these interactions combine to create 

an overall strong interaction. And because several types of interactions are involved, 

selectivity in enzyme-substrate interactions exists.  

 The specificity of an enzyme can refer to how it binds to the substrate or how it 

favors reacting molecules or atoms. Binding specificity is a broad term that can mean that 

only one substrate can bind to an active site on the specific enzyme or that only one substrate 

that binds to the active site converts to a product. Specificity is governed by geometry 

(shape) or electronic complementarity (charge). This is induced from the arrangement of 

specific amino acids forming the active site on an enzyme attracting specific substrates.  

Specificity constant. 

 “The two constants kcat and Km are important parameters for the reaction of a 

particular substrate catalyzed by a particular enzyme since they indicate how susceptible the 

substrate is to the catalysis by the enzyme” (Bender & Brubacher, 1973, p. 27). The term 

kcat/Km is the specificity constant. The specificity constant allows you to rank an enzyme on 

how good it is with different enzymes, how fast the enzyme might catalyze a reaction, and 

what concentration of the substrate would be required to reach Vmax. 
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Enzyme inhibition. 

 Substances that combine with an enzyme and influence the binding of the enzyme to 

the substrate or turnover number, resulting in a negative effect on the enzymes activity are 

known as inhibitors. Inhibitors act through various mechanisms that can result in irreversible 

or reversible inactivation. “Irreversible enzyme inhibitors, or inactivators, bind to the enzyme 

so tightly that they permanently block the enzyme’s activity” (Voet, 2012, p. 368). 

Reversible enzyme inhibitors are substances that diminish an enzyme’s activity by (a) 

structurally resembling a substrate and binding to the active site reducing the available 

enzyme and thus the concentration of the E∙S complex; (b) binding to the E∙S complex, 

distorting the active site and disallowing the substrate to form product; or (c) a combination 

of both mechanisms (Voet, 2012). 

Enzyme Catalyzed Biodiesel Production 

 In the production of biodiesel, lipases are the family of enzymes used. Ideally, in the 

production of biodiesel, lipases should (a) be non-stereospecific (so all mono-, di-, and 

triglycerides will react); (b) catalyze both TGs and FFAs; (c) have low product inhibition 

with high FAME yield; (d) have a low reaction time; (e) be easily recovered and re-used; (f) 

react at mild temperatures; and (g) have minimal alcohol or glycerol inhibition. In studies of 

enzymatic catalysis of biodiesel, many lipases have been researched and their effect on 

several of the variables listed above have been analyzed and optimized. “In general, enzyme 

catalysts at 4-10 wt% result in FAME yields of 55-97% in 3-120 hours at 30-50 C” (Akoh et 

al., 2007, p. 8996). Table 2.4, compiled by Fjerbaek et al. in 2009, summarizes the research 

done up to that point. 
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Lipases.  

 In order to appreciate why lipases are the enzyme used to catalyze the production of 

biodiesel, an understanding of their structure and mechanism is useful. Lipases are a class of 

enzymatic biocatalysts that have proven to be of great use in many industries, including the 

biodiesel industry. There are many reasons for this including the fact that they (a) are stable 

in organic solvents; (b) do not require cofactors nor do they catalyze side reactions; (c) 

possess broad substrate specificity and display exquisite chemoselectivity, regioselectivity, 

and stereoselectivity; (d) are readily available in large quantities because many of them can 

be produced in high yields from microbial organisms, namely fungi and bacteria; and (e) 

have solved crystal structures of many lipases, facilitating considerably the design of rational 

engineering strategies (Jaeger & Eggert, 2002; Jaeger & Reetz, 1998).  

α/β hydrolase fold superfamily. 

 Lipases belong to one of the 41 distinct families of the versatile and widespread α/β 

hydrolase fold superfamily (Lazniewski, Steczkiewicz, Knizewski, Wawer, & Ginalski, 

2011). These enzymes, which range in molecular weight from of 19-60 kD, bind a variety of 

ligands including lipids, peptides and ethers to catalyze the hydrolysis of bonds that play an 

important role in the synthesis and degradation of a variety of compounds (Jaeger & Reetz, 

1998; Lazniewski et al., 2011). The structural similarities, as well as the slight 

inconsistencies between these subfamilies play an important role in their function as 

described below and shown in Figure 2.11.  

The canonical α/β hydrolase fold has been described as consisting of mostly parallel, 

eight-stranded β sheets surrounded on both sides by α helices (only the second β strand is 

anti-parallel). . .and it displays a left-handed superhelical twist, with the first and last 
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strands crossing each other at an angle of approximately 90 degrees. The degree of 

twisting can show significant differences, however, with the largest deviations usually 

localized between strands β5 and β6. Differences may be also be present in the spatial 

position of the α-helices connecting the β-strands of the central β sheet. In some cases, 

one or more of these helices may even be completely absent. Only helix αC appears to be 

well conserved; it has a strategic position in the center of the β-sheet and plays a key role 

in the correct positioning of the nucleophilic residue in the active site. (Nardini & 

Dijkstra, 1999, p. 732)  

 
 

Figure 2.11. Secondary structure diagram of a ‘canonical’ α/β hydrolase fold. 

The location of the catalytic triad is indicated by black dots. Dashed lines 

indicate the location of possible insertions (Nardini & Dijkstra, 1999, p. 732). 

 

 

The variability of the secondary structure in enzymes of the α/β hydrolase fold superfamily is 

shown Figure 2.12.  
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Figure 2.12. Variability of the secondary structure of various α/β hydrolase fold enzymes. α 

helices and β strands belonging to the ‘canonical’ fold are represented by white rectangles 

and gray arrows, respectively. Secondary structure elements that deviate from the ‘canonical’ 

fold are represented in black. The location of the catalytic triad is indicated by black dots and 

the corresponding single-letter amino acid code where S=serine, D=aspartic acid, and 

H=histidine (Nardini & Dijkstra, 1999, p. 733). 
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Lipase subfamily. 

 The lipase subfamily of the α/β hydrolase fold superfamily is a carboxylesterease that 

catalyzes the hydrolysis of long-chain acylglycerols, a class of lipids (Jaeger & Reetz, 1998). 

Lipids are characteristically any member of a class of biological molecules that are fatty 

acids (carboxylic acids that contain long chain hydrocarbon side groups) or their derivatives, 

and they are insoluble in water but soluble in organic solvents. Of all the α/β hydrolases, 

lipases are particularly useful in industry due to their structural and mechanistic properties. 

Interfacial activation and the lid. 

 Since lipids are water insoluble due to their high hydrophobicity and lipases are water 

soluble, catalytic activity takes place at the water-lipid interface. This phenomenon is 

referred to as “interfacial activation.” “The determination of their 3D structure seemed to 

provide an elegant explanation for interfacial activation: the active site of lipases was found 

to be covered by a surface loop, which was called the lid” (Jaeger & Reetz, 1998, p. 397). 

The structure of the lid may vary among lipases from very small to quite large to a double 

lid. In any case, the lid moves to permit the interaction between the lipases’ hydrophobic face 

and residues that surround the lipase active site with the hydrophobic surface of the substrate. 

When contact occurs with a lipid/water interface, the lid undergoes conformational 

rearrangement which renders the active site accessible to the substrate (Fernandez-Lafuente, 

2010; Schmid & Verger, 1998). The lid may also serve as a device to inhibit the proteolytic 

activity, or the breakdown of the protein, by the catalytic triad found at the active site, 

thereby protecting the enzyme itself (Brady et al., 1990). 
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Active site triad. 

 The active site that is exposed upon opening of the lid consists of a catalytic triad 

responsible for the cleavage reaction of the lipid’s ester bond. The triad of catalytic residues 

is composed of (a) a nucleophile (serine, cysteine, or aspartic acid) positioned after strand β5; 

(b) an acidic residue almost always positioned after strand β7; and (c) an absolutely 

conserved histidine located after the last β-strand. These three residue positions are shown in 

Figure 2.11 as Nucleophile, Acid, and Histidine and in Figure 2.12 as S, D, H. The 

nucleophile residue is typically found in a Sm-X-Nu-X-Sm sequence motif referred to as the 

nucleophile elbow, where Sm stands for a small residue, typically glycine (Gly), X stands for 

any amino acid, and Nu stands for nucleophile, usually serine (Ser) (Jaeger & Reetz, 1998; 

Nardini & Dijkstra, 1999). The sequence variation within this motif is one of the factors 

distinguishing various lipolytic families (Lazniewski et al., 2011). The nucleophile elbow is 

found in a very sharp turn in a characteristic β-turn-α motif. This conformation positions the 

nucleophilic residue free of the active site surface and allows easy access on one side to the 

active site histidine (His) residue and on the other side to the substrate (Jaeger, Dijkstra, & 

Reetz, 1999). “The geometry of the nucleophile elbow also contributes to the formation of an 

oxanion-binding site, which is needed to stabilize the negatively charged transition state that 

occurs during hydrolysis. This ‘oxanion hole’ is usually formed by two backbone nitrogen 

atoms: the first is always from the residue immediately following the nucleophile, whereas 

the second is usually located between strand β3 and α-helix” (Nardini & Dijkstra, 1999, p. 

733). 
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Figure 2.13. Structure of Mucor miehei lipase in closed (A, C) and open form (B, D). 

In A and B the catalytic triad (yellow) and secondary structure elements common to 

all lipases is shown. In C and D a space-filling model is shown, colored by decreasing 

polarity (dark blue - light blue – white – light red – dark red). Upon opening the lid or 

flap, the catalytic triad becomes accessible (D), and the region binding to the 

interphase becomes significantly more apolar (Schmid & Verger, 1998, p. 1613).  
 

 The characteristics of the structure, active site and interfacial activation of lipases 

have been found to be common in almost all lipases. Figure 2.13 illustrates the structure of 

the lid and active site triad, and Table 2.5 summarizes these important structural and 

functional features. 
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Table 2.5. Important Features of Lipases 
Feature Details Remarks 

Mechanism based on a 

“catalytic triad” made up 

of nucleophilic serine, 

histadine, and 

aspartate/glutamate 

Found in over 30 lipases, including 

those from psychrophilic or 

thermophilic microorganisms; the only 

exception is replacement of aspartate 

for glutamate. Substitutions of serine 

for cysteine by site-directed 

mutagenesis led to strongly reduced 

activity 

Related hydrolases show much greater 

variability in catalytic mechanism. In 

the case of proteases, the amide bond 

can be hydrolyzed through nucleophilic 

attack by hydroxyl (serine, threonine) 

or thiol groups (cysteine), or through 

electrophilic attack by a carboxyl 

group (aspartate/glutamate) or a metal 

ion, (Zn
2+

)  

Consensus sequence at the 

active serine residue 

The consensus sequence for over 30 

closed lipases is a “nucleophile elbow” 

at the end of a theta sheet and is 

composed of -Gly/Ala-X-Ser-X-

Gly/Ala- 

Other hydrolases show greater 

variability 

Most lipases feature a lid 

structure 

A lid composed of an amphiphilic 

peptide loop covers the active site of 

the enzyme in the inactive state. 

No lid was observed in esterases or 

proteases, but some lipases have no lid 

or just a small lid. 

All lipases are members of 

the “α/β-hydrolase fold” 

family 

The structure is composed of a core of 

predominantly parallel β strands 

surrounded by α helices. The active 

nucleophilic serine residue rests at a 

hairpin turn between a β-strand and an 

α-helix. 

Many other hydrolases (esterases, 

acetylcholine esterases, serine 

proteases, carboxypeptidases, 

dehydrogenases) and even a 

haloperoxidase show a similar 

structural motive, which suggests 

evolutionary relationships. 

Adapted from Schmid & Verger, 1998, p. 1614 

 

Lipase mechanism. 

 Lipases catalyze the chemical process of conversion of acylglycerols to fatty acids 

and glycerol by acting on the carboxyl ester bonds. The active site’s catalytic triad is similar 

to that observed in serine proteases, and therefore catalysis by lipases is thought to proceed 

along a similar path (Brady et al., 1990; Jaeger et al., 1999). 

 Because of the similarity of these two mechanisms and the far larger number of 

references that describe the mechanism of serine proteases versus lipases, the serine protease 

mechanism is shown in Figure 2.14 and Figure 2.15. The major difference between the two is 

the substrate and the bond that is broken. The serine protease family hydrolyzes the peptide 

bond of an amide where a lipase hydrolyzes the ester bond of an acylglycerol. In the 
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numbered list that follows, descriptions of the structures and bonds for a lipase catalyzed 

reaction (in parenthesis) versus a serine protease catalyzed reaction are provided.  

    

 
 

Figure 2.14. The catalytic mechanism of the serine proteases is very similar to the catalytic 

mechanism of lipases (Voet, 2012, p. 344). 
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1. Substrate hydrolysis starts with a nucleophilic attack by the catalytic-site-Ser on the 

scissile carbonyl’s carbon atom of the peptide bond (ester bond), leading to the formation 

of a tetrahedral intermediate. The Ser residue is ideally positioned to carry out this 

nucleophilic attack as a result of proximity and orientation effects. The nucleophilic 

attack involves transfer of a proton to the imidazole ring of the catalytic-sit-His, thereby 

forming an imidazole ion. This process is aided by the polarizing effect of the unsolvated 

carboxylate ion of catalytic-site-Asp or Glu, which is hydrogen bonded to the catalytic-

site-His. The tetrahedral intermediate, to which the lipase shows preferential binding, has 

a well-defined, although transient, existence. This binding preference is due to the 

stabilization of the intermediate by hydrogen bonding to nitrogen atoms of main-chain 

residues that belong to the so-called “oxyanion hole” shown in Figure 2.15. 

2. The tetrahedral intermediate decomposes to the acyl-enzyme intermediate under the 

driving force of proton donation from N3 of the catalytic-site-His facilitated by the 

polarizing effect of the catalytic-site-Asp or Glu on the catalytic-site-His. 

3. The amine (alky) leaving group is released from the enzyme and replaced by water from 

the solvent. 

4. The acyl-enzyme intermediate, which is highly susceptible to hydrolytic cleavage, adds 

water by the reversal of Step 2, yielding a second tetrahedral intermediate. 

5. The reversal of Step 1 yields the carboxylate product (free fatty acid) thereby 

regenerating the active enzyme. In this process water is the attacking nucleophile and the 

catalytic-site-Ser is the leaving group (Jaeger & Reetz, 1998; Voet, 2012, p. 345). 



46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Transition state stabilization in the serine protease is similar to that in lipases. 

(a) When the substrate binds to the enzyme, the trigonal carbonyl carbon of the scissile 

peptide (ester) is conformationally constrained from binding in the oxanion hole. (b) In the 

tetrahedral intermediate, the now charged carbonyl oxygen of the scissile peptide (ester) 

enters the oxanion hole and hydrogen bonds to the backbone NH groups of the catalytic-site-

Ser and the catalytic-site-Gly. The consequent conformational change permits the NH group 

of the residue preceding the scissile peptide (ester) bond to form an otherwise unsatisfied 

hydrogen bond to the catalytic-site-Gly. Therefore, serine proteases (lipases) preferentially 

bind the tetrahedral intermediate (Voet, 2012, p. 346). 

  

Regioselectivity of lipases.  

 Another commonality among lipases is their specificity. Many lipases exhibit sn-1,3 

specificity towards TG; however, the tendency towards acyl migration from the sn-2 to the 

sn-1 or sn-3 positions can lead to hydrolysis of all three ester bonds of the TG (Fernandez-

Lafuente, 2010; Schmid & Verger, 1998). A suggested cause for this regioselectivity 

involves the structure of the enzyme in conjunction with substrate binding possibilities. “The 

enzyme contains a large hydrophobic groove in which the sn-3 acyl chain fits, a mixed 

hydrophilic/hydrophobic cleft for the sn-2 moiety of the substrate, and a smaller hydrophobic 

groove for the sn-1 chain. The difference in size and the hydrophilicity/ hydrophobicity of 

the various pockets determine the enzyme’s enantiopreferences and regiopreferences” 

(Jaeger et al., 1999, p. 336). In Figure 2.16, the four possibilities of substrate binding shown 

(a) (b) 
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demonstrate the regioselectivity of sn-1 or sn-3 positions due to binding of the substrate’s 

acyl chains to the hydrophilic/hydrophobic grooves.  

 

Figure 2.16. Four possibilities were suggested as to how a triacylglyceride substrate 

and analog can bind to a sn-1(3)-regioselective lipase. In the left column (a and c), the 

scissile sn-1 fatty acid chain binds to the hydrophobic groove. In the right column (b 

and d) the scissile sn-3 fatty acid chain binds to the hydrophobic groove. In the upper 

row (a and b), the sn-2 substituent binds to the hydrophobic cleft. In the bottom row 

(c and d), the non-hydrolyzed sn-3(1) fatty acid chain binds to the hydrophobic 

crevice. The sections a and d as well as b and c display the same configuration at the 

prochiral C2 of glycerol (Kovac et al., 2000, p. 68). 

 

Enzyme inhibition and other considerations. 

 “The yield of biodiesel products through lipase catalysis is modulated by the substrate 

ratio (alcohol/oil), alcohol type, temperature of the reaction, water content, purity of the 

triacylglycerol and enzymes’ and whole cell immobilization” (Akoh et al., 2007, p. 9000). 

Because of an enzyme’s specificity, many of these variables (water content, methanol 

content, effect of glycerol, immobilized versus liquid formulation) react differently 
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depending on the specific lipase used. The following sections will describe generally how 

each of these variables is affected by lipase catalyzed reactions. 

Alcohol inhibition. 

 One of the critical problems with using enzymes in biodiesel production is the 

deactivation of the enzyme by an alcohol. This is especially true in the commercial 

production because methanol is a particularly strong inhibitor and an excess amount of 

methanol is needed to drive the transesterification reaction forward. “There is an apparent 

connection between the solubility of the alcohol in oil” (Nielsen et al., 2008, p. 696). Low 

conversion is due to inactivation of lipases by contact with insoluble alcohols that exist as 

drops in the oil (Shimada, Watanabe, Sugihara, & Tominaga, 2002). A solution to this 

conundrum was presented by Shimada et al. (2002) as a three step or step-wise addition of 

methanol to the reaction. Also, Kaida, Samukawa, Kondo, and Fukuda (2001) reported that 

water or a solvent may help to alleviate lipase inactivation by methanol by solubilizing the 

methanol and drawing it away from the enzyme. Finally, use of alcohols other than methanol, 

help reduce alcohol inhibition, as Chen and Wu reported that the degree of enzyme 

inactivation is inversely proportional to the number of carbon atoms in the alcohol (Chen & 

Wu, 2003). However, when considering the economic viability of a biodiesel production 

facility the use of solvents, which must be recovered, and costlier alcohols compared to 

methanol makes these methods less economically competitive (Gog, Roman, Tosa, Paizs, & 

Irimie, 2012).   

Ping pong bi-bi mechanism with competitive inhibition.  

 “Lipase transesterification of TG with an alcohol (alcoholysis) involves a two-step 

mechanism when looking at a single ester bond. The first step is hydrolysis of ester bond and 
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release of the alcohol moiety followed by an esterification with the second substrate” 

(Fjerbaek et al., 2009, p. 1301). The reaction mechanism for the esterification step conforms 

to a ping pong bi-bi mechanism, a widely accepted mechanism for alcoholysis of TG. (Al-

Zuhair, 2006; Silverman, 2000).  

 Most of the kinetic models reported are based on the application of simple Michaelis-

Menten kinetics, which seem to be valid for most simple enzymatic reactions. In the case of 

producing biodiesel, a step of liberating fatty acids from triglyceride should precede the 

esterification of free fatty acids. For simplicity, Michalelis-Meneten kinetics will be used for 

the preliminary hydrolysis step to liberate the free fatty acids from the oil. However, for the 

esterification of the free fatty acids the most suitable kinetic model is the ping pong bi-bi 

kinetic model with competitive inhibition by the alcohol (Al-Zuhair, 2006). A diagram of the 

esterification reaction is shown in Figure 2.17. Other components of the reaction mixture that 

have exhibited inhibitory effects, and therefore should be included in the kinetics model, 

include fatty acid substrate and glycerol when using immobilized enzymes.  

 

 

Figure 2.17. Schematic representation of the ping pong bi-bi mechanism with competitive 

inhibition by both alcohol and acid substrates where E=enzyme, A=fatty acid, B=alcohol, 

P=water, Q=FAME, and Ac=acyl group, and E-B and E.Ac-A are the deadend inhibition 

complexes of enzyme with alcohol and acid, respectively (Krishna & Karanth, 2001, p. 264). 
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 Using this theory, the initial rate at the interface of the liquid enzyme that considers 

inhibition by both alcohol and substrate was derived by Al-Zuhair et al (2006).  

 
  

    

  
  

   
[  

   
   

]  
  

   
[  
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(2.5) 

Where KA = binding constant for the fatty acid, KB = binding constant for the alcohol, KiA = 

inhibition constant for the fatty acid, and KiB = inhibition constant for the alcohol (Al-Zuhair, 

Jayaraman, Krishnan, & Chan, 2006, p. 213) 

 Fjerbaek et al. (2009) point out the limitation of using this model. “Steady-state 

kinetics, such as Michaelis-Menten, can possibly describe the enzymatic conversion 

satisfyingly with appropriate fitting to a long range of models of varying complexity, but the 

accuracy of this can be questioned” (p. 1301). Therefore, while this is a convenient model to 

apply, steady state kinetics may not accurately describe the kinetics of the reaction in 

biodiesel production. Additionally, neither the formation of mono- and diglycerides, the 

effect of temperature enzyme deactivation, nor the equilibrium limitations of the reactions 

are considered. 

 However, this model does deepen our understanding of the mechanisms and kinetics 

of this reaction, despite the less than perfect model. An examination of the other 

considerations mentioned in the review need to be included in order to fully understand how 

a specific enzyme behaves in this process. 

Water content.  

 In a lipase catalyzed reaction with an insoluble substrate, such as oil, there is a need 

for some water to maintain and activate the lipase. Water contributes to the formation of a 

heterogeneous reaction medium where a liquid-liquid interface exists between the enzyme 
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and the substrate. The interface is the point where the lipase can access the substrate and 

catalyze the reaction. Lipase activity is influenced by the nature, size and properties of the 

interface. In general, an increase in interfacial area (i.e. an increase of water) increases the 

activity of the enzyme in a lipid/water solution (Akoh et al., 2007; Gamba, Lapis, & Dupont, 

2008). In practical terms for a biodiesel production facility, “if the system is water free, no 

reaction takes place while the rate of reaction increased with increased water content (1-20 

wt% water)” (Fjerbaek et al., 2009, p. 1302). 

 Too much water, however, may cause a reverse esterification reaction or hydrolysis 

of FAME to FFA and methanol leading to a lower yield of FAME (Al-Zuhair, Dowaidar, & 

Kamal, 2009; Lam et al., 2010). Additionally too much water may decrease the life of the 

enzyme (Fjerbaek et al., 2009). “The optimum water content is a compromise between 

minimizing hydrolysis and maximizing enzyme activity for the transesterification reaction” 

(Yucel, 2012, p. 101). 

Use of solvents. 

 The purpose of using organic solvents is to “ensure a homogenous reaction mixture 

alleviating the problem of reactants in two phases; it reduces the viscosity of the reaction 

mixture increasing the diffusion rate reducing mass transfer problems around the enzymes; 

for immobilized enzymes non-polar solvents might force the residue water to stay around the 

enzyme increasing the water activity locally and solvents might help stabilizing enzymes” 

(Fjerbaek et al., 2009, p. 1302). Non-polar or hydrophobic solvents used in this capacity 

include isooctane, n-heptane, petroleum ether, n-hexane, cyclohexane and conventional 

diesel. (Al-Zuhair et al., 2009; Fernandez-Lafuente, 2010; Fjerbaek et al., 2009). It has also 

been observed that glycerol, a non-polar compound, is insoluble and remains in the reactor 
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where it absorbs to immobilized lipase causing the same level of inhibition as in a solvent-

free reaction system (Gog et al., 2012). 

 Polar or hydrophilic solvents are typically much less useful as they strongly interact 

with the essential water layer coating the lipase that contributes to the lipases’ interfacial 

activation.  However, the use of 1,4-dioxane and tert-butanol have shown high 

transesterification yields. Tert-butanol, a molecule with moderate polarity, has been shown to 

be the most effective solvent because it does not interfere with the esterification reaction, it 

has the ability to dissolve oil, alcohol (to avoid inhibition by methanol) and glycerol (to avoid 

mass transfer problems) (Nielsen et al., 2008). For a commercial scale biodiesel production 

facility, solvents create potentially more problems than they solve, such as a need for larger 

equipment (solvents take up volume), environmental issues (solvents are volatile and 

potentially hazardous), and increased costs due to the necessary recovery of the solvent.  

Liquid versus immobilized enzymes. 

 Liquid, soluble, or free enzymes are enzymes that are immersed in a liquid phase, 

typically water, and are not bound to each other or to another medium. The liquid may 

contain stabilizers to prevent enzyme denaturation as well as preservatives to prevent 

microbial growth. (Nielsen et al., 2008). Immobilized enzymes are bound to a carrier such as 

silica beads or gel, alumina beads, ceramic beads, ion-exchange resin, photo crosslinkable 

resin, and possibly nanoparticles (Fernandez-Lafuente, 2010). Some methods for 

immobilization include adsorption techniques, covalent bonding, entrapment, cross-linked 

enzyme aggregates (CLEAs), and protein coated microcrystals (PCMCs) (Fjerbaek et al., 

2009; Lam et al., 2010).  
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 Much of the recent research in enzymatic biodiesel production focuses on 

immobilized enzymes because of their ease of extraction and re-use and because of the added 

stability an enzyme has when it is immobilized (Akoh et al., 2007; Al-Zuhair, Ling, & Jun, 

2007; Nielsen et al., 2008). “The purpose of immobilization is to provide a more rigid 

external backbone for lipase molecule which will result in a faster reaction rate” (Lam et al., 

2010, p. 513). Immobilized enzymes may be used in a continuously stirred tank reactor 

(CSTR) followed by a simple filtration to extract the enzymes, or they have been used in 

packed bed reactor (PBR) columns (Al-Zuhair et al., 2011; Watanabe, Shimada, Sugihara, & 

Tominaga, 2001). “In general, the optimal temperature can be expected to increase when 

immobilizing an enzyme because binding to the carrier material gives stability to the enzyme 

and therefore decreases the effect of thermal deactivation compared to free enzymes” 

(Fjerbaek et al., 2009, p. 1303).  

 When using immobilized enzymes the effect that the immobilization has on internal 

and external mass transfer must be considered. Internal mass transfer refers to the fact that 

large molecules, such as TG and FAME, have to diffuse through small pores to reach the 

enzymes while only sparingly soluble reactants, such as methanol, have to travel through oil 

filled channels. External mass transport limitations arise when a filmlayer forms, particularly 

of glycerol, around the carrier (Fjerbaek et al., 2009). Internal mass transfer problems can be 

alleviated with pretreatment or washing techniques of soaking the enzymes in a solvent, such 

as n-hexane, water, ethanol or propanol (Fernandez-Lafuente, 2010). External mass transfer 

problems have been lessened with increased stirring in CSTRs or increased flow in PBRs 

(Fjerbaek et al., 2009), by the removal of glycerol during the reaction or the use of solvents 

to solubilize the glycerol and draw it away from the enzyme.  
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 The removal of glycerol can also be accomplished with a hydrophilic ultrafiltration 

membrane, where the glycerol in the nonpolar reacting medium is pulled towards the 

membrane because of its stronger affinity for the polar membrane. This mechanism can be 

more easily and cheaply accomplished with the addition of water, as long as the above 

discussed effects of water are kept in mind. Additionally, pretreatment of the enzyme with a 

mixture of oil, methyl oleate, and methanol has shown to intrude the carrier and take up place 

where the glycerol would intrude if not pretreated (Fjerbaek et al., 2009). Finally, a 

hydrophobic, rather than a hydrophilic, carrier may lessen the external and perhaps internal 

mass transfer limitations.  

 Because of the difficulty of recovering liquid enzymes, there has been considerably 

less discussion and research focused on liquid enzymes in a production capacity. The 

advantages to using liquid enzymes are that the mass transfer resistances are negligible and 

the addition of an extra (solid) phase to the system, which may slow the reaction down, is 

avoided.  (Fernandez-Lafuente, 2010; Nielsen et al., 2008). From an economic standpoint, 

liquid enzymes are less costly than immobilized. “The carrier itself, as well as the 

immobilization process, adds significantly to the cost of immobilized enzymes” (Nielsen et 

al., 2008, p. 695). Furthermore, lipase is already a quite stable enzyme, so the need for 

additional stabilization via immobilization is not necessary and can be detrimental.  The lack 

of research in this area and the significant advantages to using liquid enzymes is the 

motivation for conducting this research to find an effective way to recover and reuse liquid 

enzymes. 
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Enzyme loading. 

 Applying Michaelis-Menten kinetics under steady state conditions, more enzyme 

present in a reaction results in a faster initial reaction.  While other reaction parameters affect 

the extent of the rate increase, research has confirmed rate increases with higher enzyme 

loading for immobilized and liquid enzymes in conjunction with varied alcohol to oil ratios 

(Chen, Du, & Liu, 2008; Hernández-Martín & Otero, 2008; Xu, Du, Zeng, & Liu, 2004). A 

limiting factor in this trend observed with liquid enzymes is the available liquid-liquid 

interfacial area between the water and oil. “[W]hen the lipase concentration on the interface 

reached the maximum adsorptive capacity, the esterification rate could not be improved 

obviously with the increase in enzyme concentration” (Chen et al., 2008, p. 2099).   

Recovery and Reuse of Liquid Enzymes 

 Research into the recovery of liquid enzymes in production of biodiesel is fairly 

limited, as most of the research done with enzymes in biodiesel has focused on the use of 

immobilized enzymes. A technique that has the potential to capture active enzymes from the 

glycerol/aqueous phase for reuse in enzymatic biodiesel production is membrane filtration. 

“Ultrafiltration is one of the methods used to concentrate, purify and recover enzymes” 

(Echavarria, Ibarz, Conde, & Pagan, 2012, p. 52). One such commercial process that uses 

ultrafiltration to successfully recover enzymes from a viscous solution is the clarification and 

filtration of apple juice (Kim, Meyssami, & Wiley, 1989; Sheu, Wiley, & Schlimme, 1987). 

This technique, which is novel to recovery of enzymes in the biodiesel industry, will be 

explored in this research, and will therefore be explained in more detail. 
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Membrane-based ultrafiltration. 

 Membrane filtration is a separation technique that can be classified depending on the 

size of the particles being separated. Figure 2.18 shows the range of particle sizes used in 

different types of membrane based bioseparation. Ultrafiltration, with a pore size between 

approximately 0.001 μm and 0.1 μm, is the most appropriate size for enzyme fractionation. 

Ultrafiltration membranes are typically characterized by molecular weight cutoff (MWCO) 

rather than pore size and range from 5kD to1,000 kD. The MWCO value indicates the size of 

the molecule that the membrane can retain to 90% efficiency. For example, a MWCO value 

of 10 kD meant the membrane will most likely retain 90% of the molecules having a 

molecular weight of 10kD. Concurrent with the importance of particle size, the transport of 

material through an ultrafiltration membrane is primarily driven by a pressure gradient that 

typically ranges from 10 to 100 psig (Abdel-Latif, 2010).    

 

Figure 2.18. Filtration type versus pore size. Ultrafiltration is most appropriate for use with 

enzymes, which are proteins (Abdel-Latif, 2010, p. 1). 
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 “A good general rule is to select a membrane with a MWCO that is 3 to 6 times lower 

than the molecular weight of the molecules to be retained… [I]f flow rate (or processing 

time) is a major consideration, selection of a membrane with a MWCO toward the lower end 

of this range (3x) will yield higher flow rates. If recovery is the primary concern, selection of 

a tighter membrane (6x) will yield maximum recovery (with a slower flow rate)” (Schwartz 

& Seeley, n.d.).  

 The modes of operations for membrane ultrafiltration are either direct flow filtration 

(DFF) or tangential flow filtration (TFF). In DFF the feed stream is perpendicular to the 

membrane face and attempts to pass 100% of the feed through the membrane. In TFF (also 

called crossflow filtration), the feed stream passes parallel to the membrane face, and is 

separated into a permeate (the portion containing smaller molecules that pass through the 

membrane) and a retentate (the portion retained by the membrane). Depending on the set-up 

and desired accuracy of separation, the retentate can either be pulled off or recirculated back 

into the feed. When size is the basis of separation, TFF can be a more efficient mode due to 

the fact that the flow of feed passing parallel to the membrane surface sweeps away larger 

aggregating molecules that would otherwise form a membrane-clogging gel to allow for 

smaller molecules to move toward and pass through the membrane.  
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Figure 2.19. In dead-end filtration or DFF, the feed is directed into the membrane. Molecules 

larger than the pores accumulate at the membrane surface to form a gel, which fouls the 

surface, blocking the flow of liquid through the membrane. As the volume filtered increases, 

fouling increases and the flux rate decreases rapidly. In cross-flow filtration or TFF the feed 

channel directs solution along (tangent to) the surface of the membrane as well as through the 

membrane. The crossflow prevents build-up of molecules at the surface that can cause 

fouling. The TFF process prevents the rapid decline in flux rate seen in direct flow filtration 

allowing a greater volume to be processed per unit area of membrane surface (Schwartz & 

Seeley, n.d.).  

Tangential flow filtration. 

 Two important parameters in TFF are the tangential velocity and the transmembrane 

pressure. The tangential velocity is the rate of flow of the feed stream/recirculated retentate 

across the membrane surface. It provides the force to sweep away aggregated molecules from 

the membrane surface that lead to a gel layer formation. However, the shear and turbulence 

caused by too high of a tangential velocity could damage the enzymes. Therefore, it is 

important to optimize the tangential velocity so that the filtration system can operate at the 

minimum tangential velocity that prevents gel layer formation.  

 The transmembrane pressure is the force that drives the fluid through the membrane, 

carrying along the permeate molecules. Transmembrane pressure results from the fluid 

flowing through the often narrow feed channels creating a pressure drop between the feed 

and retentate ports. The viscosity of the feed helps determine the channel height, which 
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typically falls between 0.5 mm and 2 mm. The tangential velocity and the transmembrane 

pressure are directly linked, where increasing the tangential velocity or restricting the tubing 

at the retentate increases the transmembrane pressure and vice versa.   

 The optimization of these two design parameters is crucial to allow the greatest 

volume of product to be filtered in the least possible time. The result of this is an optimum 

flux or permeate flux defined as the throughput of material a membrane or flow per unit 

membrane area. The common unit for flux is liter/m
2
/hour or LMH and is calculated using 

Equation 6.  

 
  

 

   
 (2.6) 

where J = Permeate flux rate (liters per m
2
 per hour, LMH)  

 V = volume of permeate generated (liters) 

 A= Membrane area (m
2
) 

 T = Process time (hours) 

 

 Establishing baseline water fluxes for a specific set-up is a useful metric for 

characterizing new membranes and for assessing gel layer formation or fouling effects and 

the effectiveness of cleaning.  

Tangential flow filtration unit. 

 TFF membrane modules are similar to plate and frame presses, where the flat 

membrane sheets are separated by narrow channels; this is referred to as the membrane 

cassette. Feed is pumped into the channels and the permeate crosses over the membrane into 

grooves in the membrane holder where it enters the permeate flow channel and is drained to a 

permeate reservoir. The retentate is recirculated to the feed reservoir to allow for multiple 

membrane passes. Figure 2.20 is a schematic of one such TFF membrane module. 
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Figure 2.20. Tangential Flow Filtration module where feed stream flows tangentially to the 

membrane layers. Separation occurs as the smaller molecules that make up the permeate pass 

through the membrane into a drainage tube below and the retentate becomes more 

concentrated in enzyme (Abdel-Latif, 2010, p. 10) 

 

 

 Additional components of the filtration skid include pumps, tubing, valves, pressure 

gauges, and reservoirs. When handling thermally sensitive material (as in the case of 

Thermomyces lanuginosus) temperature sensors and heat exchangers may also be included. 

Figure 2.21 shows a diagram of what this type of system might look like. A system similar to 

this one will be used for this research, and is described in more detail in the description of the 

experimental design in Chapter 3. 
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Figure 2.21. System design for TFF unit for thermally sensitive materials. 
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Chapter 3: METHODOLOGY   

General Overview of the Research Design  

This research aimed to compare the effectiveness of using Selective Aqueous Phase 

Reduction (SAPR) versus a Tangential Flow Filtration (TFF) system as a recovery technique 

for a commercially available liquid enzyme formulation of Thermomyces lanuginosus lipase 

(Liquid TL), after its use and subsequent re-use as a catalyst for the transesterification of 

triglycerides (TG) with methanol to make fatty acid methyl esters (FAME) or biodiesel. The 

SAPR method was a simple technique where gravity settling and decantation were used to 

remove a portion of the aqueous phase that formed as one of the three anticipated phases 

following the reaction of TG from lipid feedstock with methanol. The three phases included a 

top layer of FAME, a thin middle layer of primarily enzymes, and a bottom aqueous layer 

(Figure 3.1). The aqueous phase consisted primarily of glycerol, methanol, and water, 

although there may be some enzyme suspended as well. The reduction of aqueous phase 

(referred to as the “SAPR Reduction”) was necessary to remove glycerol formed during the 

reaction in order for the chemical equilibrium in the subsequent batch to favor FAME 

production, as well as to accommodate limited reactor volume. The remaining aqueous phase 

plus enzyme layer (referred to as the “SAPR Retentate”), was added to the subsequent batch. 

The TFF method used a Purostep Phoenix Pilot-Scale Filtration Unit (50 LPM) with a 

membrane filter designed and crafted by SmartFlow Technologies specifically for the 

aqueous phase (containing glycerol, methanol, water) and the enzymes. It was presumed that 

the filtered material (referred to as the “TFF Permeate”), analogous to the SAPR Reduction, 



63 

 

was going to be purely glycerol, water, and methanol. The filter would retain the enzyme 

along with some glycerol, methanol and water, in the retentate (referred to as the “TFF 

Retentate”), and was added to the subsequent batch. A series of four batches were run for 

each method. The effectiveness of conversion of TG to FAME was determined by the 

amount of bound glycerin in samples collected through-out and at the end of a 24 hour 

reaction window. The free fatty acid (FFA) content of each sample was tested to indicate the 

hydrolytic equilibrium and to better elucidate the rate mechanics of the reaction. Bench scale 

mini-batches using virgin soybean oil were conducted with the SAPR Reduction and the TFF 

Permeate to determine if enzyme was lost in the recovery stage of the process.  

 

 

Figure 3.1. Three distinct phases formed during initial trials using Callera Trans to esterify 

virgin soy bean oil with methanol to produce FAME. The bottom glycerol layer is cleaner 

than the glycerol byproduct produced in traditional chemically catalyzed biodiesel production 

and considered technical grade following striping of the residual methanol and water. 

FAME Layer 

Enzyme Layer 

Aqueous Phase: Glycerol, Methanol, Water 
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Collaboration with Piedmont Biofuels 

 Piedmont Biofuels is a small (1million gallons per year) biodiesel producer located in 

Pittsboro, NC that supplies biodiesel to customers across central and eastern North Carolina. 

Their mission is to lead the sustainability effort in North Carolina through the development 

and production of clean, renewable fuels. Their biodiesel feedstock is primarily used cooking 

oil from food service establishments throughout the region, but also includes poultry fat, 

sausage waste, brown grease, corn oil from distiller’s dry grains (DDG), and fatty acid 

distillates, among other lower quality feedstocks. Much of the fuel Piedmont Biofuels 

produces is sold to oil companies, who then blend it with petroleum diesel and distribute it 

through gas stations and other channels. Another avenue Piedmont uses to bring biodiesel to 

local North Carolinians is through their fuel co-operative, where members have access to 

seven pumping stations maintained by Piedmont that provide B100. 

 In addition to Piedmont’s production plant, there is a research division focused on 

developing technologies which make small scale production better, faster, and cheaper. Their 

focus on enzymatic catalysis has helped them stand out as a leader in development of cutting-

edge, small-scale technologies. Their enzymatic FAeSTER (Fatty Acid eSTERification) 

process uses the CalB enzyme, developed and sold by Novozymes under the trademarked 

name Callera Ultra, to convert high free fatty acid feedstocks into quality fuel. “The 

FAeSTER process is a patent pending, fully continuous esterification technology using 

immobilized or liquid enzymes. The enzymes can be reused for multiple reactions, and 

[Piedmont] has achieved a catalyst cost of $0.15 per gallon processed feedstock. This process 

is a direct replacement for acid esterification using sulfuric acid, or solid acid catalysts, and 

generates a dry (<1500ppm water), low FFA (<1%) feedstock ready for transesterification. 

http://www.biofuels.coop/enzymatic-biodiesel
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For very high FFA feedstocks like acid distillates or brown grease, this process is particularly 

cost effective. What differentiates FAeSTER from normal enzymatic esterification is [the] 

ability to continuously remove moisture to drive the esterification reaction towards methyl 

ester production” (Burton & Austic, 2011). This process is “a necessary component of full 

enzyme based biodiesel production process. Independent of feedstock, enzyme 

transesterification yields 2-3% FFA. The FAeSTER process can easily esterify or “polish” 

this FFA directly in methyl esters”, (Burton & Austic, 2011). In the spring of 2012 Piedmont 

opened the first full scale, continuous plant using the FAeSTER process at their facility in 

Pittsboro, NC. 

 In continued efforts to develop a fully enzyme catalyzed process, Piedmont’s research 

has turned to enzymatic transesterfication. Research on the use of the Thermoymces 

languinosa liquid enzyme trademarked as Callera Trans, developed and sold by Novozymes, 

has shown to be promising. The research Piedmont conducted with Novozymes prior to 

collaboration for this thesis included optimizing the “recipe” at a bench scale. The point at 

which collaboration began for the content of this thesis was at the scale-up from bench scale 

to a 50 gallon reactor where research on the feasibility and logistics of recovery and reuse of 

the liquid enzyme were initiated.   

Previous Research on Callera Trans 

 Previous bench scale research was conducted in an attempt to clarify the effects of 

methanol addition and enzyme loading on Callera Trans catalyzed transesterifications. From 

published Novozymes’ white papers entitled “Enzymatic large scale production of biodiesel” 

Nielsen and Rancke-Madsen (2011) describe a fully enzymatic two-step process for 

producing biodiesel. “The principle is that the first transesterification step is processing the 
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glycerides to esters and some FFA by use of Callera Trans. The FFA is esterified in the 

second step by use of Callera Ultra to achieve FFA according to ASTM specifications in the 

final biodiesel” (Nielsen & Rancke-Madsen, 2011, p. 231) 

 

Figure 3.2. A fully enzymatic biodiesel production consists of two steps: transesterification 

of TG using the enzyme Callera Trans followed by esterification of FFA using the enzyme 

Callera Ultra (Nielsen & Rancke-Madsen, 2011). 

 

 In these trials, three batches were run back-to-back reusing the enzyme laden aqueous 

phase for catalysis of subsequent batches. The transesterification step used 1.4-1.5 molar 

equivalents of methanol to fatty acid dosed in a step-wise fashion with 0.5% enzyme loading 

(w/w) with respect to the oil mass. Reaction temperature was 45°C with a time between 4-24 

hours. After the 3
rd

 reaction FFA content post-transesterification with Callera Trans was 

approximately 7%, giving a fatty acid conversion of approximately 96% (Nielsen & Rancke-

Madsen, 2011). The esterification step reduced the FFA to less than 0.25%. Details of this 

step are not presented because the research conducted for this thesis focuses on examining 

the transesterification step. 

 Further research was conducted by Piedmont Biofuels to determine a set of standard 

operating parameters and a recipe for transesterification with Callera Trans. This research 

focused on determining appropriate catalyst loading and the optimum rate of methanol 

addition, with the goal of minimizing deactivation due to excess methanol, while maximizing 



67 

 

the rate of reaction. This reaction used approximately 1.7 molar equivalents of methanol, 

where 25% was dosed initially and 75% was dosed over either 5 hours or 3 hours. For each 

methanol dosing scheme, enzyme loading of 0.5%, 1% and 2% (w/w) oil was used. The 

implications deduced from these trials include that a methanol concentration in excess of 6% 

in the reaction leads to deactivation of the enzyme and that a 5 hour dosing rate is most 

reasonable for 2% enzyme loading. However, additional research should be done to confirm 

and elaborate on these results. None the less, these findings were influential in determining 

the enzyme loading amount and methanol dosing scheme for the scaled-up batches conducted 

for this thesis.  

Previous Research on Enzyme Recovery via TFF  

 Initial trials were conducted by Piedmont Biofuels using a TFF unit identical to the 

one used for this research to filter and reduce by 20% a “mock” aqueous phase comprised of 

FAME, glycerol, water, methanol, and enzyme. The retentate was then used to catalyze 

bench-scale batches to determine the effectiveness of retaining the enzyme. This process was 

repeated for a course of ten bench scale batches. Overall the data indicated that a vast 

majority (approximately 90%) of the enzyme was retained during the filtration process.   

Characterization of Inputs 

 The feedstock used was a homogenous mixture of equal parts corn oil extracted from 

distiller’s dry grain and waste fryer oil from local restaurants collected by Piedmont 

Biofuel’s production team. The FFA content of the combined waste oils was determined by 

titration before each batch was run and was found to be approximately 9%.  
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 The liquid form of a commercially available enzyme formulation of Thermomyces 

lanuginosus similar to Callera Trans was purchased from Novozymes by Piedmont Biofuels. 

This enzyme is thermally sensitive to temperatures in excess of 45°C.  

 Glycerol used was technical grade and obtained from Chemsolv. Methanol was also 

purchased from Chemsolv. Well water from the tap was used with a pH of 5.75.  

Apparatus 

Transesterification Reactor 

 The reaction vessel used was a Springboard BioPro 190 unit, which is a stainless steel 

all-in-one biodiesel production unit designed for homebrewing or small-scale batch making. 

The unit has a total capacity of 60 gallons, which allows for 50 gallons of oil feedstock to 

react with 10 gallons of methanol to produce 50 gallons of biodiesel and roughly 6 gallons of 

glycerol. The contents of the BioPro were agitated with a powerful tri-blade impeller that sits 

approximately mid-way down the volume of the unit. The unit is designed for an acid, base 

or two step process followed by a three stage water wash and evaporative drying cycle. The 

unit has a large covered opening to load the feedstock and separate inlet ports for loading 

methanol, and the base and acid catalysts. There is also a separate hook-up for a water source 

and an outlet port for the finished fuel.  

 For this series of experiments, the BioPro unit was used in its manual-mode, where 

the agitator was user controlled, and minor modifications were made to the BioPro unit to 

facilitate better control within the specified temperature range. An external methanol dosing 

system was also required for the enzyme catalyzed biodiesel reaction. The temperature 

control system of the BioPro was replaced with an off-the-shelf digital thermostat to allow a 

lower set-point temperature. As well, one of the ports on the BioPro was modified to allow a 
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continuous, relatively small methanol dose to be added over an extended period of time. This 

dosing system was achieved by a dosing pump configuration assembled from three lab scale 

dosing pumps: a 907MityFlex Fixed Speed Peristaltic Pump, contributing a constant rate of 

approximately 54 mL/min and two Stepdos 03 chemically resistant, diaphragm metering 

pumps whose rates could be varied from 0.3 – 30 mL/min and contributed the remainder of 

the total dosing rate. The inlets to the dosing pumps were connected to two 10 gallon carboys 

of methanol hooked up to a manifold of three tees. The outlets from the pumps were mated 

together to result in a single methanol feed.     

Validating Dosing Pump Configuration.  

 The delivery rate of the dosing pump configuration was initially determined and was 

verified before and after each batch. Verification of the pump configuration was 

accomplished by filling a 1000 mL graduated cylinder with methanol for ten minutes and 

calculating the rate by dividing the volume collected in milliliters by ten minutes. If the rate 

had drifted from the required amount, it was corrected by adjusting one of the Stepdos 

diaphragm pumps. Due to the imperfect dosing system configuration, the methanol dosing 

rate fluctuated slightly during some runs. To account for this, the total methanol dosed was 

calculated from the integration of the final flow rate and the initial flow rate over time.  

Tangential Flow Filtration Unit  

 The TFF unit (Figure 3.3) used included a Purosep Phoenix Pilot-Scale Filtration Unit 

designed and built by SmartFlow Technologies. Due to the thermally sensitive nature of the 

enzymes, an inline temperature probe was used to continuously monitor the temperature, and 

a jacketed filtration reservoir was added before the pump as well as an additional post-

filtration heat exchanger after the membrane module to maintain a temperature below 40°C. 
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 The unit was fit with a 3/4” retentate loop to be used in conjunction with the 

CONSEP® 3000 filter module and manifold. The CONSEP® 3000 filter module consists of 

alternating layers of “Permeate Packs” and “Retentate Channel Separators.” A Permeate Pack 

consists of sheet membranes bonded to both sides of a single permeate screen separator. 

Retentate Separators are layered between Permeate Packs to form a single filter module. 

(Figure 3.4). The number of layers is proportional to the desired membrane surface area 

required.  

 

Figure 3.3. Purosep Phoenix Pilot Scale Filtration Unit in conjunction with the CONSEP® 

3000 filter module and manifold. 
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For this particular application a regenerated cellulose membrane was used with a molecular 

weight cut off (MWCO) of 10 kD. The total membrane surface area was 0.19 m
2
 and the 

channel height was 0.5mm. The CONSEP® 3000 module was sealed in the CONSEP® 3000 

manifold by means of two terminal end silicone gaskets. 

 

 
 

Figure 3.4. The feed channel directs a stream by the Permeate Packs where smaller 

molecules (glycerol, methanol, water) pass through the membrane and are directed to the 

permeate channel. The retentate contains the relatively large enzymes. (b)The unique flow 

channels of the CONSEP® 3000 allows for equal flow rates across the membrane surface.  

 

(a) 

(b) 



72 

 

 CONSEP® 3000 filter is unique in that the flow channels use a patented rib design 

that creates uniform retentate channels that in turn produce equal flow rates across the 

membrane surface. This aids in minimizing gel layer formation on the membrane surface, 

which in turn greatly increases the permeate flow rate.  

 In Smartflow Technologies’ optimization of this TFF system for the recovery of the 

enzyme Callera Trans, a tangential velocity or recirculation rate between 12.5-15 liters/min 

and an outlet pressure of 50 psi with an inlet pressure between 65-75 psi were recommended. 

The optimization trials were run using a mock aqueous phase comprised of FAME, glycerol, 

water, methanol, and enzyme. While this does not match exactly the aqueous phase from 

actual biodiesel batches, particularly when considering contaminants that may be suspended 

in the aqueous phase from the feedstock, it does give a decent suggestion of optimum 

tangential velocity and transmembrane pressures.  

 These two parameters were controlled by changing the pump speed to increase or 

decrease the velocity of the feed entering the membrane, resulting in a change in tangential 

velocity, and/or by opening or restricting a manual back pressure valve downstream from the 

filter module resulting in a change to the transmembrane pressure. Additionally, temperature 

was checked regularly and if it exceeded the recommended 40°C, the tangential velocity was 

slowed to allow for more residence time in the heat exchanger. The use of this unit required a 

balancing act between maintaining sufficiently low inlet pressure and temperature while 

achieving a sufficiently high permeate flux rate, which required constant manipulation of the 

controlling parameters.  
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Cleaning the tangential flow filtration unit between runs and NWP. 

 The Normalized Water Permeate (NWP), the term used for permeate flux when 

deionized water is run through the system, was used as a metric for any fouling that may 

have occurred on the membrane throughout the trials. The NWP was calculated as the unit 

was running by timing the collection rate of 100 mL of water from the permeate outlet, and 

then using Equation 3.1 to calculate a flux. 

 

   
 

   
 (3.1) 

 

 where J = Permeate flux rate (liters per m
2
 per hour, LMH)  

  V = volume of permeate generated (liters) 

  A= Membrane area (m
2
) 

  T = Process time (hours) 

 

NWP was measured before the unit was used to filter any aqueous phase to be approximately 

85 LMH, after cleaning of the membrane between batches, and whenever there was concern 

about gel layer formation indicated by slowing of the permeate flux.  

 Cleaning of the TFF unit occurred between each batch. The system was flushed with 

deionized water equivalent to approximately five times the system volume and a small 

amount of detergent. This mixture was drained, and the system was thoroughly flushed to 

remove any detergent. The membrane was stored wet in a 4% sodium bisulfite solution. 

Procedure 

First-Batch Transesterification Reaction 

 As this research aimed to compare the effectiveness of enzyme re-use using two 

enzyme recovery methods: selective aqueous phase reduction (SAPR) and a tangential flow 

filtration unit (TFF), there were a series of four consecutive batches run for each method. 
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Fresh enzyme was added only to the initial batch and the subsequent three batches were 

catalyzed by recovered enzyme from the previous batch. FAME and FFA from each batch 

were then analyzed to determine completeness of reaction, an indicator for enzyme activity.  

At the start of each batch, the thermostat on the BioPro was adjusted to approximately 

40°C while the oil was recirculated and allowed to equilibrate for 2 to 4 hours. For both the 

SAPR and TFF series of four batches, the first batch was slightly different from the three 

subsequent batches in the amount of enzyme, methanol, water, and glycerol additions. In the 

first batch an enzyme addition of 1% by feedstock weight was added. The target 

compositions for the other inputs in the first-batch, as well as all subsequent batches, were as 

follows: a 1.7 molar excess of methanol to TG, and an aqueous phase of 20% by feedstock 

weight, which itself was composed of 40% water and 60% glycerol by weight. The optimum 

amount of water was such that there was sufficient water present to activate the enzyme, 

while avoiding an overloading, which would have driven the hydrolysis reaction of 

converting TG to glycerol and FFA. Glycerol was used as an inert substance to bulk up the 

aqueous phase to allow for easier mixing in this size batch. The first-batch recipe by volume 

is listed in Table 3.1. 

 

Table 3.1. First-Batch Recipe 

 Feedstock Enzyme 

Initial 

Methanol, 

25% 

Dosed 

Methanol, 

75% 

Water Glycerol 

Volume 

(gallons) 
42 1.3 L 2.3 6.8 3.1 3.6 

 

An initial 25% of the total methanol, along with the water, glycerol, and the entire 

enzyme dose was added to the unit. With this addition, stirring of the reactor was initiated, 

and continuous methanol dosing of the remaining 75% of total methanol addition began. The 
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methanol was dosed continuously over a five hour period and was regulated by the dosing 

pump configuration to be approximately 86 mL/min.  

 Samples of approximately 80 mL of the oil/aqueous emulsion were taken from a port 

at the base of the BioPro at 1 hour, 2 hour, 4 hour, 6 hour, 8 hour, 10 hour, and 24 hour 

intervals. The samples were allowed adequate time to phase separated into an oil/FAME 

layer and an aqueous layer containing water, methanol, glycerol and enzymes. After these 

samples phase separated, the oil layer was analyzed for FFA content and bound glycerin 

levels.  

Recovery and Reuse of Enzyme via Selective Aqueous Phase Reduction 

 After the 24 hours set to complete the reaction, the FAME/aqueous emulsion was 

pumped to a 150 gallon cone-bottom polyethylene tank. The mixture was allowed up to 2.5 

hours to separate, which resulted in a two phase system. The total volume, as well as the 

volumes of each phase, were noted. The bottom layer of glycerol, water, methanol and 

enzyme was removed from the tank, the top layer of almost exclusively FAME was pumped 

into a holding tote. The aqueous layer was then pumped back into the cone bottom tank to 

settle for another 24 to 72 hours. This long settling period theoretically allowed for further 

stratification into three layers: a top layer of residual FAME, a thin, viscous enzyme-rich 

middle layer and a large bottom aqueous layer of glycerol, water and methanol (Figure 3.5). 

Samples of approximately 200 mL of the aqueous phase were taken and analyzed for 

methanol, glycerol, and water content. The expected trends are for the amount of methanol to 

decrease, glycerol to increase and water should remain constant.  
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Figure 3.5. Phase separation after 2 hours of settling results in two phases, a FAME layer and 

an aqueous layer. After 24 - 72 hours an enzyme layer forms between the FAME and aqueous 

layers.  

 

 

 The volume of aqueous phase reduction was based on maintaining 3.6 gallons of 

glycerol in the aqueous phase that was to be added to the subsequent batch. This amount was 

slowly decanted to leave the enzyme layer as undisturbed as possible (Figure 3.6). The 

amount of methanol and water needed to bring the composition back up to target was 

calculated from the experimental results of the analysis of the aqueous phase and the 

theoretical production of each component (e.g., stoichiometric glycerol production). The 

reactor was again filled with 42 gallons of feedstock and heated to 40°C. The SAPR 

Retentate was added to the reactor, as was the make-up water and the initial methanol dose, 

before stirring was initiated and the continuous 5 hour dosing of methanol began. This 

process was repeated for the three batches subsequent to the first batch for a total of four 

batches using the same initial dose of enzymes.  
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Figure 3.6. Diagram of the set-up for recovering enzymes using the SAPR technique. 

 

Recovery and Reuse of Enzyme via Tangential Flow Filtration 

 After a 24 hour reaction period, the oil/aqueous emulsion settled in the BioPro for up-

to  2.5 hours and separated into two phases: FAME and an aqueous layer. The aqueous layer 

and a small amount of FAME that was emulsified in this layer were pumped into an 80 

gallon cone-bottom polyethylene tank. Volumes of total aqueous phase pumped to the small 

cone-bottom were noted. The majority of FAME from the reaction was pumped from the 

BioPro into a holding tote. The aqueous layer was filtered for 14-76 hours to result in an 

enzyme rich TFF Retentate which also contained glycerol, water, and methanol, and a TFF 

Permeate consisting of glycerol, methanol, and water (Figure 3.7). 
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Figure 3.7. Diagram of the set-up for recovering enzymes using the TFF technique. 

 

 

 A sample of permeate collected early in the filtration cycle was analyzed for glycerol, 

water and methanol content, which was then used to estimate the total filtration time required 

for a reduction in aqueous layer resulting in a TFF Retentate with 3.6 gallons of glycerol. 

Again, the amount of methanol and water needed to bring the composition back up to target 

was calculated from the experimental results of the analysis of the TFF Permeate and the 

theoretical production of each component. The reactor was again filled with 42 gallons of 

feedstock and heated to 40°C. The TFF Retentate was added to the reactor, as was the make-

up water and the initial methanol dose, before stirring was initiated, and the continuous five 

hour dosing of methanol began. This process was repeated for the three batches subsequent to 

the first batch for a total of four batches using the same initial dose of enzymes.  
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Analysis of Feedstock and Biodiesel 

Determining Free Fatty Acids 

The FFA content was determined by titration with KOH. This method is taken from 

the Acid Number Test defined in the ASTM Standard D6751: Standard Specifications for 

Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, specifically Test Method 

D664.  

Determining Monoglycerides, Diglycerides, Triglycerides, Bound Glycerin 

Gas chromatography (GC) analysis was used to analyze the amounts of mono-, di- 

and triglycerides in the samples, from which the total bound glycerin was calculated. The GC 

used was a HP 5890 Series 1 equipped with an open tubular column that was an Rtx-

Biodiesel TG (15m x 0.32mm x 0.1 um) and an HP 7673 auto-sampler. The method and 

calculations used were based on the ASTM (2012) method D6584-2012: Standard Test 

Method for Determination of Total Monoglycerides, Total Diglycerides, Total Triglycerides, 

and Free and Total Glycerin in B-100 Biodiesel Methyl Esters by Gas Chromatography. This 

method functionalizes 0.1 g of biodiesel with 100 microliters of the silylating agent N-

methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA), which converts the free hydroxyl 

groups the mono-, di-, and triglyceride into their more stable trimethylsilyl analogs, and is 

then followed by 100 μL of the internal standard, tricaprin. This mixture was allowed to sit 

for 15  minutes, after which 8 mL of heptane was added. Approximately 1.5 mL of sample 

was transferred to a GC vial. 

The temperature ramp for the GC oven was 50°C for 1 min, 15°C/min to 180°C, hold 

0 min, 7°C/min to 230°C, hold 0 min, 30°C/min to 380°C, hold 8 min. The carrier gas was 

helium at a constant flow of 3.0 mL/min, the detector is a flame ionization detector (FID) at 
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400°C, hydrogen flow was at 35 mL/min, air was at 350 mL/min, He (make-up) was at 30 

mL/min, and cool on-column injection with a sample size of 1 μL was used. 

ChemStation software was used to identify and manually integrate peaks for mono-, 

di-, and triglycerides as well as the internal standard, tricaprin, peak. Using the previously 

established calibration curves for each class of compounds, the mass of the bound glycerin 

contributed by each type of glyceride (mono, di, tri) was calculated using Equation 3.2. 

 

     [
    

   
] ([

    

    
]     ) [

   

 
] (3.2) 

 

 where 

      = mass percentage of individual glyceride sample, 

     = peak area of individual glyceride, 

     = peak area of Internal Standard 2, Tricaprin, 

     = weight of Internal Standard 2, mg, 

  = weight of sample, mg 

    = slope of the calibration function for mono, di, or triolien, and 

    = intercept of the calibration function for mono, di, or triolien. 

 

The total bound glycerin is the summation of the glycerin contribution from the mono, di, 

and triglycerides, which are calculated using Equations 3.3, 3.4, and 3.5. The coeffiecients in 

these equations represent the average weight fraction of the glyceryl portion for each class of 

glyceride. 

 

           ∑                                          

           ∑                                        

           ∑                                         

 

(3.3) 

 

(3.4) 

 

(3.5) 

Determining Methanol  

 To determine if any methanol remained suspended in the final FAME layer, ASTM 

standard D93: Test Methods for Flash Point by Pensky-Martens Closed Cup Tester was used.  
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Analysis of Aqueous Phase  

Determining Water  

Moisture content of the aqueous phase used a Karl Fischer coulometric titrator 

produced by Metrohm International, which is typically used for samples with small amounts 

of water. Due to the fairly large amount of water in the aqueous phase, approximately 20-

30%, the appropriate sample mass that could be analyzed was small and ranged from 12 mg 

to 15 mg.  

Determining Glycerol  

The glycerol content in the aqueous phase was determined using a rotary evaporator. 

The method used on a Buchi RotoVapor isolated the glycerol in a 100 g sample by 

vaporizing the methanol and water in the sample, and condensing it into a separate vessel. 

The equipment included a water bath to regulate temperature, a receiver flask connected to a 

vacuum gauge and a condenser. A pump connected to the condenser provided vacuum. The 

separation was performed in a 250 mL round-bottom, one neck flask. The temperature and 

pressure regiment started at 25 mbar and 25°C for 15 minutes, followed by 0 mbar and 50°C 

for 15 minutes and settled at 0 mbar and 80°C for two hours. The mass of the sample was 

taken at the 1, 1.5 and 2 hour mark. The mass percent glycerol was calculated as the final 

mass of the sample divided by the original mass of the sample 

Additionally, the residual moisture content of the glycerol was acquired using the 

Karl Fisher methods described above. 
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Determining Methanol  

 Methanol content of the aqueous phase was calculated from the difference between 

the total sample and the glycerol plus water fraction. The considerations for discrepancy in 

this method include a possible low estimate of methanol amount due to losses from 

evaporation or methanol that may have stayed immersed in the FAME layer; a skewed result 

from enzyme in the aqueous phase in the SAPR batches; or incomplete vaporization of water 

in the RotoVapor method. Despite these possible discrepancies, this method gave a 

reasonable approximation of the aqueous phase composition.  

Determining Enzyme Activity in Reduction and Permeate 

 To determine if any enzyme was extracted from subsequent reactions, a bench-scale 

mini-batch was conducted with the SAPR Reduction from each SAPR batch and TFF 

Permeate from each TFF batch. As this is the portion of the aqueous phase removed and not 

added to the subsequent batch the presence of enzyme (i.e., conversion of TG to FAME) 

indicated a loss of enzyme at that step in the series of four batches.  

 The bench-scale mini-batches reacted 40 g of virgin soybean oil with 8 g of SAPR 

Reduction or TFF Permeate and the amount of glycerol, methanol and water needed to reach 

the target compositions of 1.7 molar excess of methanol to TG, an aqueous phase of 20% by 

feedstock weight, composed of 40% water and 60% glycerol. The reaction was subject to 

transesterification conditions of 40°C and 300 RPM shaking via an SI-300 Incubated Shaker 

and was compared to three controls. Samples were taken at 2 hour, 6 hour, and 24 hour 

intervals and analyzed for total bound glycerin. The 24 hour sample was analyzed for FFA.  
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Filtration Performance 

 Data collected during the filtration processing time included recirculation rate 

(tangential velocity), inlet pressure, outlet pressure, temperature. Additionally, the permeate 

flux was calculated by timing the collection rate of 100 mL of permeate, and using Equation 

3.1 to calculate the permeate flux. Collection of data was at random intervals, more 

frequently at the start of a filtration process and less frequently once the system had been 

operating for a while.  
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Chapter 4: FINDINGS AND DISCUSSION 

Introduction 

 One aspect to remember when analyzing these data is the multitude of variables 

influencing the enzymatic biodiesel reactions and the complexity of their dependence upon 

each other. The findings presented here help to elucidate what is happening during an 

enzyme catalyzed biodiesel reaction and how this may affect the recovery and reuse of that 

enzyme. 

 An attempt was made to present the results and findings of these runs in a cascading 

progression of influential variables. The initial doses for both SAPR and TFF are first 

described, followed by an evaluation of efficacy for each technique, and ending with an 

analysis of the subsequent SAPR and TFF batches and how each reduction technique may 

have affected these batches. Because subsequent batches for both SAPR and TFF depend 

heavily on the experimental results of their respective previous batch, beyond the initial 

batches comparisons are only made between batches using the same reduction technique. In 

other words, comparisons were made between SAPR2, SAPR3 and SAPR4 and between 

TFF2, TFF3, and TFF4, but were not made between made between SAPR2 and TFF2.  

Free Fatty Acid   

 The FFA content of the FAME throughout the reactions is an indicator for the state of 

equilibrium of the driving reactions in an enzyme catalyzed transesterification of TG to 

FAME. Those reactions are a hydrolysis reaction to convert glycerides into FFA followed by 
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the esterification or alcoholysis of FFA with methanol to produce FAME and water (Figure 

4.1).  As discussed in the Review of Literature, previous research proposes that these 

reactions follow a ping-pong bi bi mechanism.  

    

  Hydrolysis:                Tri-G + H20   FFA + Di-G 

Esterification:         FFA + MeOH   FAME + H20 

 

Figure 4.1. Lipase transesterification involves hydrolysis followed by esterification.      

 

 At steady FFA levels, equal amounts of FFA are being produced from hydrolysis and 

being consumed by esterification. As shown in Figures 4.2 and 4.3, the FFA content quickly 

declined from an average starting amount of 8.92% until six hours into the reaction at which 

point the FFA effectively plateaus and there is only a slight decrease in FFA content level 

from 6 hours to the end of the 24 hour reaction window. The six hour point in the reaction is 

significant because it is the first data point after the completion of the five hour continuous 

methanol dosing and the entire methanol dose has been added to the reaction vessel by that 

point. FFA levels at the end of the 24 hour window for all batches (SAPR and TFF) range 

from 2.33% to 2.91%, a relatively modest difference. While water does play a role in these 

reactions as it is consumed and regenerated at presumably different rates, these data suggest 

that the methanol plays a more prominent role in reaching reaction equilibrium. This 

consistency in decline and end value indicates that all batches reached hydrolyic equilibrium 

in a similar time frame. Therefore, this metric, while offering insights about the enzymatic 

reaction equilibrium, does not play a role in the comparison of SAPR to TFF.  
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Figure 4.2. FFA content over the course of the initial reaction of the SAPR run.  

 

 
Figure 4.3. FFA content over the course of the initial reaction of the TFF run.  
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Initial Batches 

 The primary metric used to compare enzyme presence in both the initial batches and 

subsequent batches was the rate of bound glycerin (BG) consumed over the course of the 

reaction. The percent BG is the mass of the glycerin backbone from any mono-, di-, or 

triglycerides in a sample relative to the total mass present. For a batch of biodiesel to be 

within specifications according to ASTM standards, the percentage of BG must be less than 

0.20%.  

 Because the rate BG is consumed directly correlates to the rate of the reaction and the 

activity of the enzyme is also directly correlated to the rate of the reaction, analysis of BG 

consumed is one good indicator of the active enzyme present in the reaction. The initial BG 

for all reactions was 8.02% as determined from analysis of the feedstock. Due to the rapid 

progression and the lack of equilibrium between the hydrolysis and esterification reactions, 

in conjunction with a lag time between collecting the sample and testing for BG at the 1, 2, 

and 4 hour data points, the BG experimentally determined for these points demonstrated poor 

precision and were deemed unreliable. Therefore, these points were not used in the derivation 

of a best fit model for BG at a given time. 

 In general the amount of BG consumed follows an exponential decline for all batches. 

The statistical analysis program JMP 10 was used to fit an exponential model to the 0, 6, 8, 

10 and 24 hour data points that had been experimentally measured.  A system of fitting two 

consecutive models was used to find a best fit model for determining BG at any time during 

the reaction: the first model determined the total BG consumed over the reaction and the 

second model used the calculated total BG consumed and the experimentally measured BG 

present at 24 hours to derive an exponential equation for each batch. The beauty of the JMP 



88 

 

program is that it allows the user to hold some variables in the proposed model constant 

while iteratively fitting the other variables in the model. In the models below, the variables 

with asterisks were iteratively fit while all other variables came from experimentally 

measured data.     

1
st
 Model: 

           
                           

   (4.1) 

  

 where  BG = BG at specified time 

  BGtotal
*
 = BG consumed over 24 hour reaction window 

   

2
nd

 Model:  

                                (4.2) 

 

where  BG = BG at specified time 

 BGtotal =BG consumed over 24 hour reaction window, determined from 1
st
  Model 

 BGfinal=BG remaining at end of 24 hour reaction, difference of 8.02% and BGtotal 

 

 

 The residual sum of squares error (SSE) is the objective that is minimized in fitting 

the model to the data. It is the error that is presented for each model fit to determine how well 

the model fit the data from each batch relative to one another.  

 Figures 4.4 and 4.5 show the model fit to all the data points collected for the initial 

SAPR batch and initial TFF batch. The SSE for the rate constant for the SAPR1 batch is 

0.0165 and for the TFF1 batch is 0.0134. 
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Figure 4.4. BG content over the course of the initial SAPR run. The model was fitted using 

only the 0, 6, 8, 10, and 24 hours. However, the less reliable 1, 2, and 4 data points were 

included in the plot to show the general overall trend.   

 

 
Figure 4.5. BG content over the course of the initial TFF run. The model was fitted using 

only the 0, 6, 8, 10, and 24 hours. However, the less reliable 1, 2, and 4 data points were 

included in the plot to show the general overall trend.   
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 Both the recipe and reaction conditions for the initial batch for the SAPR run and TFF 

run were identical, therefore, the reaction kinetics and products were expected to be identical, 

within a small margin of error. A possible reason for the difference in rate of BG consumed 

was the discrepancy in methanol addition from the target methanol of 9.1 gallons. The initial 

SAPR batch was 0.92% in excess of the target methanol and the initial TFF batch was 1.24% 

below the target methanol. A more extensive analysis on the effect of methanol excess or 

deficiency on rate is discussed in another section below.    

Selective Aqueous Phase Reduction 

 The SAPR Reduction volumes and the composition, as well as the separation times 

are listed in Table 4.1 for all SAPR batches. Based on the relatively quick stratification that 

was observed in previous bench scale experiments, the aqueous phase settling was expected 

to result in three distinct phases. After a 24 to 72 hour settling time, formation of only two 

distinct layers was observed. The top layer consisted of any FAME that remained suspended 

in the aqueous phase after the initial 2.5 hours and removal of the bulk of the FAME and a 

bottom layer of a glycerol heavy phase that also contained any excess of unreacted methanol 

and water. A more viscous middle layer was expected to form where the majority of the 

active enzyme would aggregate due to its attraction to the polar/non-polar or more 

specifically, aqueous phase/FAME interface. However, none of these pilot-scale batches had 

a distinct middle layer as was expected. The approximately 3,500 fold increase in volume 

from bench-scale to pilot-scale may have required longer than anticipated settling times. The 

larger volume of aqueous phase and the decrease in ratio of interface area to aqueous phase 

volume diminished the attraction of the enzymes to the interface and increased the distance 

through the aqueous phase the enzymes must travel to aggregate at the interface. 
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Additionally, the properties of the DDG corn oil used as feedstock may have influenced the 

migration of enzymes to the aqueous phase/FAME interface.  

 There is some indication that a portion of the enzymes migrated to the interface, as 

described below with the SAPR1 Reduction. However, this lack of distinct middle layer 

leads to ambiguity about how much of enzymes migrated to the interface (an important 

aspect influencing the effectiveness of the SAPR technique) versus the portion that remained 

suspended in the aqueous phase. The tests for enzyme activity in the SAPR Reduction 

(defined in this case as the material removed from the aqueous phase of a SAPR or TFF 

batch), described in more detail in a later section show that at least a portion of the active 

enzyme remained suspended.  

 

        Table 4.1. SAPR Reduction Content 

 

 

Hours for 

Separation 

Aq. Phase 

Reduction 

MeOH 

Content 

(mass %) 

Glycerol 

Content 

(mass %) 

Water 

Content 

(mass %) 

SAPR1 26 6.0 gal 20.4% 60.3% 19.3% 

SAPR2 41.5 6.2 gal 21.0% 55.3% 23.7% 

SAPR3 46 5.6 gal 21.7% 56.2% 22.1% 

SAPR4 47 NA 16.5% 58.6% 24.9% 

 

 

 A longer separation time for SAPR2 and SAPR3 compared to SAPR1 was due in part 

to the fact that after the 6.0 gallons of SAPR Reduction from SAPR1 sat in the laboratory for 

an additional 24 hours, a noticeable skim of enzymes formed. This enzyme was lost to 

subsequent reactions, whereas if the entire aqueous phase had been allowed adequate 

separation time, may have migrated to the aqueous phase/FAME interface and been retained 

in the SAPR permeate and thus added to the SAPR2 batch. This thin layer of enzymes was 

skimmed from the surface of the SAPR1 Reduction and added back to the SAPR run at the 

start of the SAPR3 batch. This discrepancy in method affected the rate of BG consumed 
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during SAPR2, but should not impact the overall decrease in enzyme activity, as it was added 

back to the SAPR run by SAPR3.  

 Another observation made of the aqueous phase was an increase in red pigmentation 

as batch numbers progressed. This difference can be seen in the comparison of samples from 

SAPR1 versus SAPR4 in Figure 4.6. Both of these phenomenon, the longer than expected 

separation time and pigmentation of the aqueous phase, could be due to the distillers dry 

grain (DDG) corn oil that made up 50% of the feedstock. Physical properties of the corn oil 

that may influence these include its reddish color and the fact that it was not degummed, both 

properties diverge from those of soy bean oil or yellow grease used at Piedmont Biofuels for 

previous experiments with enzymatic biodiesel production.   

 
       0.5 hr           1 hr             2 hr            4hr            6 hr            8 hr           10 hr             24 hr 

  

 
           1 hr                 2 hr               4hr              6 hr               8 hr            10 hr              24 hr 

Figure 4.6. Samples from SAPR1 (top) versus SAPR4 (bottom).  
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Tangential Flow Filtration 

 The filtration times, the total volume of aqueous phase filtered, flow rate and flux of 

the TFF Permeate are listed in Table 4.2. Most noticeable in this table is the drastic increase 

in filtration time between TFF1 and TFF3. Because the filtration process had not been fully 

optimized for the specific Thermomyces lanuginosus lipase used, molecular weight cut-off of 

10 kD for the filtration membrane was used to retain the approximately 30 kD enzyme. This 

MWCO turned out to be a highly conservative choice, and contributed to a diminishing 

permeate flux due to increased gel layer formation on the membrane surface as batches 

progressed. As enzymes deactivate and denature, they tend to aggregate. These large 

molecular clusters along with large, sticky molecular contaminates in feedstock from the 

DDG corn oil may have contributed to the formation of the gel layer on the membrane in the 

later TFF batches. 

          Table 4.2. TFF Permeate Flux 

 

Hours for 

Filtration 

Aqueous 

Phase 

Filtered 

(Liters) 

Permeate 

Flow Rate 

(L/hour) 

Flux 

(LMH: 

L/m
2
•hour) 

TFF1 14 23.2 1.7 8.7 

TFF2 21 26.6 1.3 6.7 

TFF3 43 24.3 0.6 3 

TFF4 NA NA NA NA 

 

 

 The filtration times, the volumes of total aqueous phase filtered, and compositions of 

the TFF Permeate (defined as the removed material for the TFF batches) are listed in Table 

4.3. For TFF2 and TFF3 excess aqueous phase was filtered than was needed, and therefore, a 

portion of the TFF Retentate was added back to the TFF Permeate to ensure the appropriate 

amount of permeate was used to catalyze the subsequent batch.  
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Table 4.3. TFF Permeate Content 

 
Hours 

for 

Filtration 

Permeate 
MeOH 

Content 

(mass %) 

Glycerol 

Content 

(mass %) 

Water 

Content 

(mass %) 

Aqueous 

Phase Filtered 

(gallons) 

Aq. Phase 

Removed 

(gallons) 

TFF1 14 6.1 6.1 18.9% 56.5% 24.6% 

TFF2 21 7 5.4 16.6% 58.6% 24.7% 

TFF3 43 6.4 5.9 18.4% 55.4% 26.2% 

TFF4 NA NA NA NA NA NA 

 

 The preliminary optimization work of the filtration system described in Chapter 3 was 

completed by SmartFlow Technologies with a mock aqueous phase comparable to the 

methanol, glycerol and water contents of the TFF aqueous phases prior to this research. The 

recommended parameters were a tangential velocity or recirculation rate between 12 - 15 

L/min and a target transmembrane pressure between 55 psi and 65 psi. This optimization was 

aimed to result in an LMH (liters/m
2
/hour) that was sufficient to reduce the aqueous phase by 

approximately 20% in a reasonable amount of time (less than 12 hours).  Between 9 and 16 

data points were collected at random time periods during the runs. A summary of these data 

are presented in Table 4.4.    

 In an effort to increase the LMH of TFF2 and TFF3 and thus speed up the filtration 

process, the recirculation rate was increased. This increase in flow rate naturally increased 

the temperature of the viscous aqueous phase fluid moving through the narrow channels 

beyond the 40 ºC limit recommended for the Thermomyces lanuginosus lipase used. The 

increase in temperature and extended filtration time were abuses suffered by the enzyme that 

likely led to a decrease in enzyme activity for subsequent TFF batches.   
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        Table 4.4. TFF Parameters 

 TFF1 TFF2 TFF3 

Recirculation Rate 

(L/min) 

Avg 10.6 10.2 14.4 

Min 6.5 6.3 11.6 

Max 12.7 13.6 16.7 

Transmembrane 

Pressure (psi) 

Avg 63.3 63.0 65.5 

Min 61.2 55.0 62.5 

Max 65.1 68.8 68.6 

Temperature 

Avg 33.2 36.3 36.9 

Min 24.0 27.0 34.0 

Max 38.0 45.0 38.0
a
 

a
Due to the long filtration time required, the TFF unit was run over night, and     

temperatures were not checked at regular intervals. Therefore, temperatures 

most likely exceeded the 38ºC listed. 

  

Enzyme Activity in Permeate 

 An important property by which the efficiencies of SAPR and TFF are evaluated is 

their ability to retain active enzymes in the aqueous phase retentate that is used to catalyze 

subsequent reactions. Lab scale mini batches were run using the aqueous phase permeates as 

catalysts. While this does not give the full picture of how much active enzyme is left in the 

retentate (some enzyme may have been retained, but deactivated), it does give some insight 

as to how much enzyme did not make it into the retentate either during the aqueous phase 

reduction process or the filtration process.  
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  Figure 4.7. Enzyme activity in SAPR and TFF Permeates based on FFA and FAME 
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increase in FAME in the TFF3 permeate. However, this FAME may be residual FAME in the 

aqueous phase from the TFF3 reaction that was not completely drained off prior to filtration 

or this could be the 90% efficiency associated with a MWCO value for most ultrafiltration 

membranes.  

Reuse Batches 

 As with the initial batches, the primary metric used to compare enzyme presence in 

subsequent batches was the rate of BG consumed over the course of the reaction. A model 

was fit for each reaction in the same manner as it was for the initial batch. The point at which 

comparisons became most meaningful was after all the methanol has been added to the 

reaction vessel and equilibrium was reached between the hydrolysis and esterification 

reactions. The rate BG consumed at this point is most indicative of the amount of enzyme 

catalyzing the reaction in contrast to the first hours of the reaction when it was difficult to 

determine if the rate of BG consumption was a result of methanol dosing discrepancies or the 

amount of enzyme present.  

Methanol discrepancy. 

 Table 4.5 shows the discrepancy in methanol addition from the target total methanol 

of 9.1 gallons for each reaction. In general the SAPR batches more consistently had an 

under-dosing of methanol beyond the initial batch; contrarily, the TFF batches had a 

consistent excess of methanol beyond the initial batch. It is difficult to pin point the exact 

effect these methanol discrepancies had on the BG consumption rate. A shortage of methanol 

to the point where it was a limiting factor in the esterification reaction, would have slowed 

down the overall BG consumption. While a slight excess of methanol may have contributed 

to a faster esterification reaction, an over-excess of methanol can deactivate the enzyme and 
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result in a slower reaction due to less enzymes catalyzing the overall reaction. 

 Additionally, the amount of methanol present in each batch may have been 

underestimated based on the fact that the aqueous phase retentates were left partially open to 

the environment post settling or filtration. This may have resulted in evaporative loses of 

methanol from the aqueous phase post determination of aqueous phase content.  

 

Table 4.5. Methanol Discrepancies in SAPR and TFF Runs 

SAPR1 0.92% TFF1 -1.24% 

SAPR2 -6.97% TFF2 1.14% 

SAPR3 -5.65% TFF3 5.67% 

SAPR4 -1.80% TFF4 4.50% 

 

SAPR reactions. 

 Figures 4.8 shows the SAPR reaction model from the completion of methanol dosing 

at the 5-hour mark to the 24-hour mark, and Figure 4.9 focuses on that portion of data where 

the greatest decrease in activity is occurring, between the 5-hour and 10-hour data points.  

 Based on these figures, we see there was an obvious decrease in BG consumed for 

each subsequent batch. Each reuse batch at five hours has a slightly higher level of BG. This 

trend, in conjunction with FFA levels being consistent between initial and reuse batches at 

the 5-hour point, suggests a slower overall reaction rate and thus a loss of active enzymes. 

Table 4.6 and Figure 4.12 presents the models calculated for each reaction and the decrease 

in BG consumption rate between each batch and a total rate decrease of 72.7% from the 

initial batch to SAPR4. The model fitting process for reuse batches became more difficult 

and the models calculated were less reliable as shown in the increase of SSE. However, the 

fitted models combined with the knowledge of what is happening in the reaction give an 

adequate representation and means of comparison of active enzymes between batches. 
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 The very large decrease between SAPR1 and SAPR2 may be influenced by the skim 

of enzyme formed on the aqueous phase permeate of SAPR1 that was not re-introduced to 

the run until SAPR3, as was discussed in the above SAPR section of this report. Beyond 

SAPR1, the BG at 24 hours for the batches did not meet ASTM (2012) specs of below 0.24% 

mass.  

Table 4.6. SAPR Model and Rate Decrease with Associate Residual Sum of Squares Error 

 SSE Model Rate Decrease 

SAPR1 0.0032 7.84*e
-0.546t

 + 0.176  

SAPR2 0.0026 7.81*e
-0.213t

 + 0.210 61.0% 

SAPR3 0.0911 7.63*e
-0.178t

 + 0.395 16.4% 

SAPR4 0.1735 6.98*e
-0.149t

 + 1.04 16.3% 

Total 72.7% 

 

 
Figure 4.8. Rate of BG consumption post methanol dosing to 24 hour point for SAPR run. 
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Figure 4.9. Rate of BG consumption post methanol dosing to 10 hour point for SAPR run. 
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filtration process may not be flawed, but that batches run on an optimized process with the 

correct membrane size would be needed to better determine the effectiveness of TFF. 

 

Table 4.7. TFF Model and Rate Decrease with Associate Residual Sum of Squares Error 

 SSE Model Rate Decrease 

TFF1 0.0115 7.94*e
-0.419t

 + 0.078  

TFF2 0.0013 7.89*e
-0.390t

 + 0.128 6.9% 

TFF3 0.0007 7.89*e
-0.313t

 + 0.128 19.7% 

TFF4 0.0110 7.85*e
-0.223t

 + 0.172 28.8% 

Total 46.8% 

 

 
Figure 4.10. Rate of BG consumption post methanol dosing to 24 hour point for TFF run. 
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Figure 4.11. Rate of BG consumption post methanol dosing to 10 hour point for TFF run. 

 

 

 
Figure 4.12. Rate decrease between adjacent batches for SAPR and TFF runs. 

0.00

1.00

2.00

3.00

4.00

5.00

5 6 7 8 9 10

B
G

 (
m

as
s 

%
) 

Time (hour) 

TFF BG Consumed 

TFF1

TFF2

TFF3

TFF4

61.0% 

16.4% 16.3% 

6.9% 

19.7% 

28.8% 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

S2 S3 S4 T2 T3 T4

%
 R

at
e

 D
e

cr
e

as
e

  

Rate Decrease for Adjacent Batches 



103 

 

 The overall rate decrease of bound glycerin consumption that was indicative of loss 

of enzyme activity from initial batch to final batch for both runs is compared in Figure 4.13. 

The loss of enzyme activity, as indicated by the rate decrease, is correlated to the settling 

time for the SAPR run and the filtration time for the TFF run. For the SAPR run, the general 

trend showed an indirect correlation where the longer the batches settled the smaller the rate 

decrease in the subsequent batch. This indicated that longer settling times allowed for more 

enzymes to concentrate at the aqueous phase/FAME interface, resulting in fewer enzymes 

lost in the SAPR Reduction, and therefore more enzymes remained in the SAPR Retentate to 

catalyze the subsequent batch. For the TFF run, the trend showed a direct correlation where 

the longer the filtration time, the greater the rate decrease in subsequent batches, indicating a 

greater loss of enzymes during longer filtration sessions. This may be due to an increase in 

abuses suffered by the enzyme during longer filtration sessions, particularly in the form of 

increased temperatures.       

FAME Production 

 The FAME yield for both the initial SPAR and TFF batches was 97%. As the enzyme 

was recovered and reused, there was a greater loss in FAME yield for the SAPR batches than 

for the TFF batches. This is seen in the performance curve for the enzyme shown in Figure 

4.14 where the FAME yield for SAPR decreases to 91% by the fourth batch, and TFF 

maintains a FAME yield of 96% by the fourth batch. 
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Figure 4.13. Overall rate decrease from initial to final batches SAPR and TFF runs. There is 

an indirect correlation between settling time and rate decrease and a direct correlation 

between filtration time and rate decrease. 

 

 
Figure 4.14. The performance curve for the enzyme indicates a greater loss of enzyme 

activity, therefore less FAME production, over the SAPR run versus the TFF run.   
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Chapter 5: CONCLUSIONS 

Research Hypothesis 

Tangential Flow Filtration (TFF) is a more effective method for the recovery of active, liquid 

enzymes from the transesterification of waste vegetable oil with up to 10% free fatty acid 

(FFA) into fatty acid methyl esters (FAME) catalyzed by a commercially available 

formulation of the enzyme Thermomyces lanuginosus lipase as compared to the simpler 

separation technique of selective aqueous phase reduction (SAPR). 

Introduction 

 In determining if the findings support or reject the hypothesis, the primary metrics 

used were how much active enzyme is recovered in the retentate after each reduction 

technique and the rate of bound glycerin consumption in batches subsequent to the initial. 

The general trend of the data showed that while both SAPR and TFF retained active 

enzymes, and were thus able to catalyze subsequent batches, TFF was more effective than 

SAPR. While the findings from this research support this, the feasibility of implementing the 

use of liquid enzymes in the commercial production of biodiesel needs further discussion. 

Implications for Enzyme Use in Biodiesel Production 

 The goal of this research was to contribute novel information to aid in the adoption of 

enzyme catalysts for the production of biodiesel on a commercial scale. Therefore, the 

effectiveness of the recovery and reuse of enzymes and the variances from bench-scale to 
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pilot-scale that arose were of particular interest. Effectiveness is based on the quantity of 

active enzyme recovered to catalyze subsequent batches as well as the time required to settle 

and/or filter the aqueous phase. These factors were examined in the context of the influence 

they have on the economic feasibility of using liquid enzymes as a catalyst. 

 In the scale-up from the bench-scale trials that used 8g (approx. 9 mL) of feedstock to 

pilot-scale batches that used 42 gallons (approx. 159 L) of feedstock, the phase separation 

was affected. The bench-scale batches quickly separated (within 2 minutes) into three distinct 

phases, giving a basis for considering gravity settling as an option to recover enzymes. 

However, the actual settling time was much longer in the pilot-scale batches (up to 72 hours), 

and a distinct middle enzyme-rich layer that could easily be retained did not form. More 

research should be conducted to elucidate why this occurred and possible techniques to 

increase the rate of separation.  

 While the TFF technique of enzyme recovery was more effective at recovering active 

enzymes, the filtration process took a considerable amount of time. This was due most likely 

to the conservative MWCO of 10 kD that resulted in gel layer formation. This gel layer 

formation in turn affected the transmembrane pressure, permeate flux rate, and, perhaps most 

detrimentally, it increased temperatures in the system causing deactivation to the thermally 

sensitive enzyme.  

 In an attempt to further optimize the use of TFF in this application, SmartFlow 

Technologies and Piedmont Biofuels filtered the aqueous phase from TFF4 using larger 

MWCOs and analyzed the permeate for enzyme activity. MWCOs of 30 kD and 100 kD 

were used and provided similar enzyme retention with greatly increased filtration rates. This 

implies that filtration sessions could be significantly shortened without risking thermal 
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deactivation of the enzymes. While further optimization of the membrane and filtration 

system will make TFF more feasible for commercial producers, determining the overall 

feasibility requires the cost of the filtration unit being weighed against the effectiveness of 

enzyme recovery and reuse.  

Suggestions for Further Research 

 Techniques for enzyme recovery besides the two analyzed in this thesis should be 

considered for the recovery of liquid enzymes. For example, reacting multiple batches of 

biodiesel before any attempt to reduce aqueous phase would presumably ensure all active 

enzyme in the aqueous phase was recycled to the subsequent batch and it would avoid the 

abuse that the enzyme receives in the filtration process. This technique would require larger 

reactor volumes, as the aqueous phase would continually grow, and it may disrupt the 

equilibrium, but its possibility as a successful and economical enzyme recovery and reuse 

technique make this worthwhile research.  

 Optimization of batch recipe may improve the recovery of active enzyme, particularly 

in regard to the methanol dosing scheme. As discussed in Chapter 2, methanol is an enzyme 

inhibitor; therefore, the quantity of methanol in the reaction mixture at any one time has 

implications on the rate of the overall reaction. Methanol dosing schemes that have variable 

rates of delivery may better balance the reaction equilibrium and the enzyme inhibition. 

 Feedstock properties may also play a role in the effectiveness of enzyme recovery. In 

this research, the DDG corn oil that was used may have contributed to the lack of formation 

of an enzyme layer and thus the effectiveness of the SAPR technique. Additionally, 

contaminants in the feedstock may have contributed to a gel layer formation on the 

membrane. Other low quality, high FFA lipids are available as feedstocks for biodiesel 
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production, and may improve the SAPR and/or TFF techniques for active enzyme recovery. 

In addition, these feedstocks may be cheaper, and would further improve the economics 

feasibility.     

Final Remarks 

 Liquid or soluble lipases have been used to catalyze the reactions that convert lipid 

feedstocks to biodiesel with promising results. Research has shown lipases to produce high 

FAME yields using lower quality, higher FFA feedstocks, require less downstream 

purification or biodiesel and co-products, and react under milder conditions compared to 

traditional acid or base catalysts. Combined with the prospect of producing technical grade 

glycerol, a higher value co-product, lipases have the potential to be a more economical option 

for biodiesel producers. The primary reason for looking to liquid lipases compared to 

immobilized is also driven by economics, as liquid lipases are significantly less expensive.  

 The major drawback of liquid lipases is the difficulty in their recovery and reuse. This 

research has taken the initial steps of analyzing techniques that can effectively and efficiently 

recover liquid lipases so they can be recycled and used to catalyze multiple batches. The use 

of ultrafiltration as well as gravity settling showed potential, although further studies are 

required to optimize these systems.  While the use of ultrafiltration was more effective, it 

must be weighed against the capital equipment costs. This research focused narrowly on 

these two processes for making liquid lipases more economically advantageous. A larger 

body of research on processes and recovery technologies for liquid lipases in the production 

of biodiesel should be amassed to get a full picture of available, economically viable options. 

The impact of this study on the production of biofuels could be widespread if it allows the 
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industry to move closer to using lipases, a more environmentally benign, energy efficient and 

economically profitable catalyst for biodiesel production. 
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